Advertisement

A comparison of the fractal properties of salt-aggregated and polymer-flocculated colloidal particles

  • J. L. Burns
  • S. Biggs
  • Y. D. Yan
  • G. J. Jameson
Polymer Colloids
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 110)

Abstract

The aggregation of colloidal polystyrene latex particles has been investigated using small-angle static light scattering. Aggregate structures were found to be mass fractal in nature for both the salt-aggregated and depletion-flocculated systems. The measured fractal dimensions were found to be highly dependent on the salt concentration, the concentration of non-adsorbing polymer and the initial particle concentration in solution. The fractal dimensions observed for the depletion-flocculated aggregates, particularly at low polymer concentrations, were significantly larger than those observed for the salt-induced aggregates. Interestingly, for both aggregation systems, an increase in the initial particle concentration resulted in lower fractal dimensions.

Key words

Fractal dimension salt aggregation depletion flocculation colloids light scattering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mandelbrot BB (1982) The Fractal Geometry of Nature. Freeman, San FranciscoGoogle Scholar
  2. 2.
    Teixeira J (1988) J Appl Crystallogr 21:781–785CrossRefGoogle Scholar
  3. 3.
    Cannell DS, Aubert C (1986) Phys Rev Lett 56:738–741CrossRefGoogle Scholar
  4. 4.
    Wilcoxon JP, Martin JE, Schaefer DW (1989) Phys Rev A 39:2675–2688CrossRefGoogle Scholar
  5. 5.
    Lin MY, Lindsay HM, Weitz DA, Ball RC, Klein R, Meakin P (1989) Nature 339:360–362CrossRefGoogle Scholar
  6. 6.
    Carpineti M, Ferri F, Giglio M, Paganini E, Perini U (1990) Phys Rev A 42:7347–7354CrossRefGoogle Scholar
  7. 7.
    Zhou Z, Chu B (1991) J Colloid Interface Sci 143:356–365CrossRefGoogle Scholar
  8. 8.
    Amal R, Raper JA, Waite TD (1992) J Colloid Interface Sci 151:244–257CrossRefGoogle Scholar
  9. 9.
    Cowell C, Li-in-on R, Vincent B (1978) J Chem Soc, Faraday Trans 1 74:337–347CrossRefGoogle Scholar
  10. 10.
    Clarke J, Vincent B (1981) J Colloid Interface Sci 82:208–216CrossRefGoogle Scholar
  11. 11.
    Cowell C, Vincent B (1982) J Colloid Interface Sci 87:518–526CrossRefGoogle Scholar
  12. 12.
    Vincent B, Clarke J, Barnett KG (1986) Colloids Surf A 17:51–65CrossRefGoogle Scholar
  13. 13.
    Vincent B, Edwards J, Emmett S, Jones A (1986) Colloids Surf A 18:261–281CrossRefGoogle Scholar
  14. 14.
    Jones A, Vincent B (1989) Colloids Surf A 42:113–138CrossRefGoogle Scholar
  15. 15.
    Milling A, Vincent B, Emmett S, Jones A (1991) Colloid Surf A 57:185–195CrossRefGoogle Scholar
  16. 16.
    Asakura S, Oosawa F (1954) J Chem Phys 22:1255–1256Google Scholar
  17. 17.
    Feigin RI, Napper DH (1980) J Colloid Interface Sci 75:525–541CrossRefGoogle Scholar
  18. 18.
    de Gennes PG (1982) Macromolecules 15:492–500CrossRefGoogle Scholar
  19. 19.
    Scheutjens JMHM, Fleer GJ (1982) Adv Colloid Interface Sci 16:341–359CrossRefGoogle Scholar
  20. 20.
    Vincent B (1990) Colloids Surf A 50:241–249CrossRefGoogle Scholar
  21. 21.
    Goodwin JW, Hearn J, Ho CC, Ottewill RH (1974) Colloid Polym Sci 252464–471CrossRefGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG 1998

Authors and Affiliations

  • J. L. Burns
    • 1
    • 2
  • S. Biggs
    • 1
  • Y. D. Yan
    • 2
  • G. J. Jameson
    • 2
  1. 1.Department of ChemistryThe University of Newcastle University DriveCallaghanAustralia
  2. 2.Department of Chemical EngineeringThe University of Newcastle University DriveCallaghanAustralia

Personalised recommendations