Rheological properties of anisotropic charged colloidal suspensions

  • E. Lécolier
  • A. Mourchid
  • P. Levitz
New In Colloid Science
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 110)


In this paper, we have investigated the viscoelastic properties of aqueous clay suspensions. The complex modulus has been measured on a very extended scale ranging from 10−5 to 102 rad s−1. For this purpose, we used two sets of experiments: a controlled shear rate and a controlled stress rheometer. The data show that the relaxation mechanisms are very slow, and the noticeable variation of the viscoelastic moduli is located in the very narrow range of our frequency scale. We have pointed out that the elastic modulus evolves monotically with the particle concentration and follows the power law: G=A(C-C 0)α. Our results show that only the threshold C 0 varies with the ionic strength I. This power law holds in the concentration regime where the suspensions are either optically isotropic or birefringent viscoelastic solids. The observation of flow birefringence of isotropic gels leads to conclude that the Laponite suspensions are composed of micro-sized nematic clusters. This conclusion is in good agreement with the large relaxation times measured and with the hierarchical structure of these suspensions.

Key words

Laponite rheology clay suspension complex fluid viscoelastic properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    van Olphen H (1977) An introduction to Clay Colloid Chemistry. Wiley, New YorkGoogle Scholar
  2. 2.
    Rand B, Pekenc E, Goodwin JW, Smith R W (1980) J Chem Soc Faraday Trans 76:225Google Scholar
  3. 3.
    Sohm R, Tadros ThF (1989) J Colloid Interface Sci 132:62CrossRefGoogle Scholar
  4. 4.
    Mourchid A, Delville A, Lambard J, Lécolier E, Levitz P (1995) Langmuir 11:1942CrossRefGoogle Scholar
  5. 5.
    Mourchid A, Lécolier E, Van Damme H, Levitz P (1998) Langmuir, to be publishedGoogle Scholar
  6. 6.
    Mourchid A, Delville A, Levitz P (1995) J Chem Soc Faraday Discuss 101:275Google Scholar
  7. 7.
    Dijkstra M, Hansen JP, Madden PA (1995) Phys Rev Lett 75:2236CrossRefGoogle Scholar
  8. 8.
    Ramsay JDF (1986) J Colloid Interface Sci 109:441CrossRefGoogle Scholar
  9. 9.
    Gabriel J-CP, Sanchez C, Davidson P (1996) J Phys Chem 100:11139CrossRefGoogle Scholar
  10. 10.
    Pignon F, Piau J-M, Magnin A (1996) Phys Rev Lett 76:4857CrossRefGoogle Scholar
  11. 11.
    Willenbacher N (1996) J Colloid Interface Sci 182:501CrossRefGoogle Scholar
  12. 12.
    Kroon M, Wegdam GH, Sprik R (1996) Phys Rev E 54:6541CrossRefGoogle Scholar
  13. 13.
    Thompson DW, Butterworth JT (1992) J Colloid Interface Sci 151:236CrossRefGoogle Scholar
  14. 14.
    Alderman NJ, Meeten GH, Sherwood JD (1991) Non-Newtonian Fluid Mech 39:291CrossRefGoogle Scholar
  15. 15.
    Norrish K (1954) Discuss Faraday Soc 18:120CrossRefGoogle Scholar
  16. 16.
    Tassin J-F, Robert G, Benyahia L (1996) Les Cah Rhéo 15:238Google Scholar
  17. 17.
    Langmuir I (1938) J Chem Phys 6:873CrossRefGoogle Scholar
  18. 18.
    Bellini T, Mangtegazza F, Piazza R, Degiorgo V (1989) Europhys Lett 10(5):499CrossRefGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG 1998

Authors and Affiliations

  • E. Lécolier
    • 1
  • A. Mourchid
    • 1
  • P. Levitz
    • 1
  1. 1.Centre de Rechersche sur la Matière Divisée (CRMD) Centre National de la Recherche Scientifique (CNRS)Université d’OrléansOrléansFrance

Personalised recommendations