Advertisement

Quaternary structure and interaction parameters of bovine α-crystallin: influence of isolation conditions

  • J. Vanhoudt
  • T. Aerts
  • S. Abgar
  • J. Clauwaert
Biological Systems
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 107)

Abstract

The tertiary and quaternary structure of α-crystallin is still a matter of controversy. We have examined α-crystallins isolated at different temperature (4°C, 20°C and 33°C), using equilibrium sedimentation and light scattering. Both techniques give the same structural and interaction parameters (molar mass, second virial coefficient) and complementary information (hydrodynamic radius, hydrodynamic volume).

The quaternary structure changes as a function of the temperature of isolation and processing. On cooling the cytoplasma below 30 °C, the quaternary structure of α-crystallin slowly changes to a larger particle which is unstable at 20 °C. On cooling further to lower temperatures (4 °C), the α-crystallin apparently recovers its stability, so it can be stored for longer times. The structural transition between 33 °C and 4 °C is reversible as we can conclude from our data of α-crystallin isolated and measured at 33 °C and α-crystallin isolated at 4 °C, stored at 33 °C for 24 h and measured at 33 °C.

The high hydrodynamic volume of α-crystallin suggests a very loose structure for this particle: a string of beads or a random coil. This loose structure suggests a rather limited interaction between the peptides and dramatically reduces the light scattering.

This structure can also explain the chaperone activity of the α-crystallin. The loose interaction between the crystallin peptides allows the interaction of the latter with the hydrophobic surfaces of the stressed proteins.

So both functions of α-crystallin, its chaperone activity and its low scattering capacity even at high concentration, are enhanced by its expanded quaternary structure.

Key words

Eye lens α-crystallin quaternary structure second virial coefficient light scattering equilibrium sedimentation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bloemendal H (1981) Molecular and Cellular Biology of the Eye Lens. Wiley, New York, p 469Google Scholar
  2. 2.
    Benedek GB (1971) Appl Optics 10:459–475Google Scholar
  3. 3.
    Delaye M, Tardieu A (1983) Nature 302:415–417PubMedCrossRefGoogle Scholar
  4. 4.
    Spector A, Chiesa R, Sredy J, Garner W (1985) Proc Natl Acad Sci 82:4712–4716PubMedCrossRefGoogle Scholar
  5. 5.
    Voorter CEM, de Haard-Hoekman WA, Roersma ES, Meyer HE, Bloemendal H, De Jong W (1989) FEBS Lett 259:50–52PubMedCrossRefGoogle Scholar
  6. 6.
    Groenen PJTA, Merck KB, De Jong WW, Bloemendal H (1994) Eur J Biochem 225:1–19PubMedCrossRefGoogle Scholar
  7. 7.
    Schurterberger P, Augusteyn RC (1991) Biopolymers 31:1229–1240CrossRefGoogle Scholar
  8. 8.
    Tardieu A, Laporte D, Licinio P, Krop B, Delaye M (1986) J Mol Biol 192:711–724PubMedCrossRefGoogle Scholar
  9. 9.
    Augusteyn RC, Koretz JF (1987) FEBS Lett 222:1–5PubMedCrossRefGoogle Scholar
  10. 10.
    Siezen RJ, Berger H (1978) Eur J Biochem 91:397–405PubMedCrossRefGoogle Scholar
  11. 11.
    Andries C, Backhovens H, Clauwaert J, De Block J, De Voeght F, Dhont C (1982) Exp Eye Res 34:239–255PubMedCrossRefGoogle Scholar
  12. 12.
    Radlick JW, Koretz JF (1992) Biochim Biophys Acta 1120:193–200PubMedGoogle Scholar
  13. 13.
    Walsh MT, Sen AC, Chakrabarti B (1991) J Biol Chem 266:20079–20084PubMedGoogle Scholar
  14. 14.
    Wistow G (1993) Exp Eye Res 56:729–732PubMedCrossRefGoogle Scholar
  15. 15.
    Carver JA, Aquilina JA, Truscott RJW (1994) Exp Eye Res 59:231–234PubMedCrossRefGoogle Scholar
  16. 16.
    Groth-Vaselli B, Kumosinski TF, Farnsworth PN (1995) Exp Eye Res 61:249–253CrossRefGoogle Scholar
  17. 17.
    van Haeringen B, Eden D, van den Bogaerde MR, van Grondelle R, Bloemendal M (1992) Eur J Biochem 210:211–216PubMedCrossRefGoogle Scholar
  18. 18.
    van Haeringen B, van den Bogaerde MR, Eden D, van Grondelle R, Bloemendal M (1993) Eur J Biochem 217:143–150PubMedCrossRefGoogle Scholar
  19. 19.
    Ingolia TD, Craig EA (1982) Proc Natl Acad Sci USA 79:2360–2364PubMedCrossRefGoogle Scholar
  20. 20.
    Horwitz J (1993) Proc Natl Acad Sci USA 89:10449–10453CrossRefGoogle Scholar
  21. 21.
    Bhat SJ, Nagineni N (1989) Biochem Biophys Res Commun 158:319–325PubMedCrossRefGoogle Scholar
  22. 22.
    Renkawek K, Voorter CE, Bosman GJ, van Workum FP, de Jong WW (1994) Acta Neoropathol Berl 87:155–160CrossRefGoogle Scholar
  23. 23.
    Head MW, Hurwitz L, Goldman JE (1996) J Cell Sci 109:1029–1039PubMedGoogle Scholar
  24. 24.
    van Noort JM (1996) J Mol Med 74:285–296PubMedCrossRefGoogle Scholar
  25. 25.
    Thomson JA, Augusteyn RC (1983) Exp Eye Res 37:367–377PubMedCrossRefGoogle Scholar
  26. 26.
    Wang X, Bettelheim FA (1989) Proteins 5:166–169PubMedCrossRefGoogle Scholar
  27. 27.
    Xia J-Z, Wang Q, Tatarkova S, Aerts T, Clauwaert J (1996) Biophys J 71:2815–2822PubMedGoogle Scholar
  28. 28.
    Bender TMR, Lewis RJ, Pecora R (1986) Macromolecules 19:244–245CrossRefGoogle Scholar
  29. 29.
    Yphantis DA (1964) Biochemistry 3:297–317PubMedCrossRefGoogle Scholar
  30. 30.
    Johnson ML, Correia JJ, Yphantis DA, Halvorson HR (1981) Biophys J 36:575–588PubMedCrossRefGoogle Scholar
  31. 31.
    Kelly L, Holladay LA (1990) Biochemistry 29:5062–5069PubMedCrossRefGoogle Scholar
  32. 32.
    Shire SJ, Holladay LA, Rinderknecht E (1991) Biochemistry 30:7703–7711PubMedCrossRefGoogle Scholar
  33. 33.
    van Holde KE (1985) In: Physical Biochemistry. Prentice-Hall, Englewood Cliffs, NJ, pp 209–304Google Scholar
  34. 34.
    Ree HF, Hoover GW (1967) J Chem Phys 46:4181–4195CrossRefGoogle Scholar
  35. 35.
    Braig K, Otwinowski Z, Hedge R, Boisvert DC, Joachimack A, Horwich AL Sigler PB (1994) Nature 371:578–586PubMedCrossRefGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG 1997

Authors and Affiliations

  1. 1.Biophysics Research Group Department of BiochemistryUniversity of AntwerpAntwerpBelgium

Personalised recommendations