Advertisement

Das Nierenmark

Struktur, Stoffwechsel und Funktion
  • K. J. Ullrich
Conference paper
Part of the Ergebnisse der Physiologie, biologischen Chemie und experimentellen Pharmakologie book series (ERGEBPHYSIOL, volume 50)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Albrecht, E.: Zur physiologischen und pathologischen Morphologie der Nierenzellen. Verh. dtsch. path. Ges.1900, 462.Google Scholar
  2. Ashby, W.: Carbonic anhydrase in mammalian tissue. J. biol. Chem.151, 521 (1943).Google Scholar
  3. Barclay, J. A., andR. F. Crampton: The enzyme and electrolyte content of rat kidney. XXth Int. Physiol. Congr., Abstracts of communic. 1956, p. 59.Google Scholar
  4. Bejdl, W.: Vergleichende Untersuchungen über die Verteilung der alkal. Phosphatase in der Ur- und Nachniere sowie in den Nebennieren. Z. mikr.-anat. Forsch.61, 533, (1955).PubMedGoogle Scholar
  5. Bergström, I., G. Magnusson, E. Odeblad andD. Ziliotto: A study on the uptake of injected radioiron in the mouse kidney. Acta physiol. scand.35, 36 (1955).PubMedGoogle Scholar
  6. Berliner, R. W.: Renal Function (ed.S. E. Bradley), Tubular secretion of potassium and acid. Third Conference, New York: Josiah Macy Foundation 1951, p. 174.Google Scholar
  7. —: Renal secretion of potassium and hydrogen ions. Fed. Proc.11, 695 (1952).PubMedGoogle Scholar
  8. —,N. G. Levinsky, D. G. Davidson andM. Eden: Dilution and concentration of the urine and the action of antidiuretic hormone. Amer. J. Med.24, 730 (1958).PubMedGoogle Scholar
  9. Black, D. A. K., E. W. Emery, A. H. Gowenlock andA. G. Riddell: Vortrag. Meeting of the renal association. London, 29. 4. 1959.Google Scholar
  10. —,B. W. Zweifach andF. D. Speer: Tetrazolium salts. A new tool in generala. exp. Pathology. Amer. J. Path.23, 332 (1953).Google Scholar
  11. Bloor, W. R.: Zit. nachJ. M. R. Beveridge: The function of phospholipids. Canad. J. Biochem.34, 361 (1956).Google Scholar
  12. Bonting, S. L., V. E. Pollak, R. C. Mührcke andR. M. Kark: Quantitative histochemistry of the nephron. Science127, 1342 (1958).PubMedGoogle Scholar
  13. Braun Falco, O., u.B. Rathjens: Zur Frage spez. Hemmung der Nierenkohlensäureanhydratase im histolog. Schnitt durch 2-Acetylamino-1,3,4-Thiodiazol-5-Sulfonamid. Acta histochem. (Jena)2, 39 (1955).Google Scholar
  14. Braus, H., u.C. Elze: Anatomie des Menschen, Bd. 2, S. 367. Berlin: Springer 1934.Google Scholar
  15. Brewer, D. B.: Histological and polarization studies of the brush border of the proximal convoluted tubules of the rat kidney. Quart. J. micr. Sci.,95, 23 (1954).Google Scholar
  16. Brodsky, W. A., J. F. Miley, J. T. Kaim andN. P. Shah: Characteristics of acidic urine after loading with weak organic acids in dogs. Current concepts on renal mechanisms of acidification in relation to data on CO2 tension. Amer. J. Physiol.193, 108 (1958).PubMedGoogle Scholar
  17. Buending, E., u.E. Farber: z. Z. noch unveröffentlicht, 1957. Zit. nachE. Farber, W. H. Sternberg u.C. E. Dunlap.Google Scholar
  18. Burgess, W. W., A. M. Harvey andE. K. Marshall: The site of the antidiuretic action of pituitary extracts. J. Pharmacol. exp. Ther.49, 237 (1933).Google Scholar
  19. Burstone, M. S., andJ. E. Folk: Histochemical demonstration of aminopeptidase. J. Histochem. Cytochem.,4, 217 (1956).PubMedGoogle Scholar
  20. Cesa-Bianchi, D.: Contributo alla conoscenza della anatomia e della fisiopatologia renale. Int. Mschr. Anat. Physiol.27, 89 (1909).Google Scholar
  21. —: Experimentelle Untersuchungen über die Nierenzelle. Frankfurt. Z. Path.3, 461 (1909).Google Scholar
  22. Chinard, F. P., andTh. Enns: Relative renal excretion patterns of sodiumion, chloridion, urea, water and glomerular substances. Amer. J. Physiol.182, 247 (1955).PubMedGoogle Scholar
  23. Chiquoine, A. D.: The distribution of glucose-6-phosphatase in the liver and kidney of the mouse. J. Histochem. Cytochem.1, 429 (1953).PubMedGoogle Scholar
  24. Crane, M. M.: Observations on the function of the frogs kidney. Amer. J. Physiol.81, 232 (1927).Google Scholar
  25. Davenport, H. W., andA. E. Wilhelmi: Renal carbonic anhydrase. Proc. Soc. exp. Biol. (N. Y.)48, 53 (1941).Google Scholar
  26. Dawson, R. M. C.: Liver glycerylphosphorylcholin diesterase. Biochem. J.62, 689 (1956).PubMedGoogle Scholar
  27. De Metry, J. P., andJ. K. Aikawa: Effect of Hg203 labeled mercaptomerin on renal sulfhydral concentration in normal rabbits. Proc. Soc. exp. Biol. (N.Y.)90, 413 (1955).Google Scholar
  28. Dickens, F., andH. Weil-Malherbe: Metabolism of normal and tumour tissue. A note on the metabolism of medulla of kidney. Biochem. J.30, 659 (1936).PubMedGoogle Scholar
  29. Drenckhahn, F. O., u.J. Meissner: Autoradiographische Untersuchungen über die Lokalisation von Na235SO4 in der Meerschweinchenniere. Naunyn-Schmiedeberg’s Arch. exp. Path. Pharmak.227, 444 (1956).Google Scholar
  30. Dunn, J. S., andC. J. Polson: Experimental uric acid nephritis. J. Path. Bact.29, 337 (1926).Google Scholar
  31. Edwards, J. G.: Functional sites and morphological differentiation in the renal tubule. Anat. Rec.55, 343 (1933).Google Scholar
  32. Eger, W., u.W. Schulte: Zum Nachweis der Phosphoamidase im Leber- und Nierengewebe. Acta histochem. (Jena)1, 60 (1954).Google Scholar
  33. Fand, S. B., H. J. Levine andH. L. Erwin: A reappraisal of the carbonic anhydrase method of Kurata. J. Histochem. Cytochem.6, 92 (1958).Google Scholar
  34. Farah, A., E. J. Cafruni andH. S. di Stefano: Histochemical studies on the site of action of mercurial diuretics. J. Histochem. Cytochem.4, 271 (1955).Google Scholar
  35. Farber, E., W. H. Sternberg andC. E. Dunlap: Histochemical localization of spezific oxydative enzymes. Tetrazolium stains for DPN-Diaphorase and TPN-Diaphorase. J. Histochem. Cytochem.4, 254 (1956).PubMedGoogle Scholar
  36. Fishman, W. H., andJ. R. Baker: Cellular localization of β-glucuronidase in rat tissues. J. Histochem. Cytochem.4, 570 (1956).PubMedGoogle Scholar
  37. Fuld, M.: Mammalian transamidinase. Fed. Proc.15, 257 (1956).Google Scholar
  38. Fulton, J. F.: A textbook of physiology. Philadelphia: W. B. Saunders Comp. 17. Edition 1955.Google Scholar
  39. Gerlach, E., u.E. Weber: Papierchromatographische Trennungsmethode für die säurelöslichen Phosphorverbindungen aus Nierengewebe. Naunyn-Schmiedeberg’s Arch. exp. Path. u. Pharmak.224, 496 (1955).Google Scholar
  40. Gersh, I.: The site of renal elimination of hemoglobin in the rabbit. Anat. Rec.65, 371 (1936).Google Scholar
  41. —, andE. J. Stieglitz: Histochemical studies on the mammalian kidney. Anat. Rec.58, 349 (1934).Google Scholar
  42. Giebisch, G.: Measurements of pH, chloride and inulin concentrations in proximal tubule fluid of necturus. Amer. J. Physiol.185, 171 (1956).PubMedGoogle Scholar
  43. Ginetzinsky, A. G.: Role of hyaluronidase in the reabsorption of water in renal tubules: The mechanism of action of the antidiuretic hormone. Nature (Lond.)182, 1218 (1958).Google Scholar
  44. —, u.L. N. Ivanova: Die Rolle der Hyaluronsäure-Hyaluronidasesystems bei der Wasserrückresorption in den Nierentubuli. Dokl. Akad. Nauk SSSR.119, 1043 (1958a).Google Scholar
  45. —,M. S. Sax andL. K. Titova: The mechanism of action of the anti-diuretic hormone. Dokl. Akad. Nauk SSSR.120, 216 (1958b).Google Scholar
  46. Glimstedt, G.: Quantitative histotopochemische Untersuchungen über die Nieren. II. Verteilung des Alkalis. Z. mikr. anat. Forschung54, 145 (1943) und Bull. schweiz. Akad. med. Wiss.3, 182 (1947/48).Google Scholar
  47. —,H. R. Johansson u.N. Jonsson: Das Sammelrohrsystem der Niere bei Kochsalzbelastung. Verh. anat. Ges. (Jena)50, 182 (1952). — Anat. Anz. Erg.-H. 99.Google Scholar
  48. Gomori, G.: Microtechnical demonstration of sites of lipase activity. Proc. Soc. exp. Biol. (N. Y.)58, 362 (1945).Google Scholar
  49. —: Histochemical localisation of true lipase. Proc. Soc. exp. Biol. (N. Y.)72, 697 (1949).Google Scholar
  50. —: Microscopic histochemistry, principles and practice. Chicago: Chicago University Press 1952.Google Scholar
  51. Goor, H. van: Carbonic anhydrase. Enzymologia13, 73 (1948).Google Scholar
  52. Gottschalk, C. W., andM. Mylle: Evidence that the mammalian nephron functions as a countercurrent multiplier system. Science128, 594 (1958).PubMedGoogle Scholar
  53. Grupp, G., u.K. Hierholzer: Der O2-Verbrauch von Nierengewebe verschiedener Zonen. Z. Biol.109, 197 (1957).PubMedGoogle Scholar
  54. György, P., W. Keller u.Th. Brehme: Nierenstoffwechsel und Nierenentwicklung. Biochem. Z.200, 356 (1928).Google Scholar
  55. Hargitay, B., u.W. Kuhn: Das Multiplikationsprinzip als Grundlage der Harnkonzentrierung in der Niere. Z. Elektrochem.55, 539 (1951).Google Scholar
  56. Hausmann: Zit. nachH. Meyer Über Diurese. Marburger Sitzungsber. 1902, S. 92.Google Scholar
  57. Hays, R. M., E. Lamdin, R. H. Maffly andA. Leaf: Permeability of the toad bladder to urea and the effect of neurohypophyseal hormone. Fed. Proc.18, 66 (1959).Google Scholar
  58. Heidenhain, M.: Synthetische Morphologie der Niere des Menschen. Leiden: E. J. Brill 1937.Google Scholar
  59. —: Mikroskopische Beiträge zur Anatomie und Physiologie der Nieren. Arch. mikr. Anat.10, 1 (1874).Google Scholar
  60. —: Versuche über den Vorgang der Harnabsonderung. Pflügers Arch. ges. Physiol.9, 1 (1874).Google Scholar
  61. —: Mikroskopische Beiträge zur Anatomie und Physiologie der Nieren. Schultze’s Arch. mikr. Anat.10, 1 (1874).Google Scholar
  62. Hilger, H. H., J. D. Klümper u.K. J. Ullrich: Wasserrückresorption und Ionentransport durch die Sammelrohrzellen der Säugetierniere. Pflügers Arch. ges. Physiol.267, 218 (1958).Google Scholar
  63. Hirokawa, W. Über den osmotischen Druck des Nierenparenchyms. Hofmeisters Beitr. chem. Physiol. u. Path.11, 458 (1908).Google Scholar
  64. Hollatz, W.: Das Massenverhältnis von Rinde und Mark in der Niere des Menschen und einiger Säugetiere und seine Bedeutung für die Nierenformen. Z. Anat. Entw.-Gesch.65, 482 (1922).Google Scholar
  65. Holten, S. G., andR. R. Bensley: The functions of the differentiated partes of the uriniferous tubule in the mammal. Amer. J. Anat.47, 241 (1931).Google Scholar
  66. Howell, A. B., andJ. Gersh: Conservation of water by the rodent dipodomys. J. Mammalogy16, 1 (1935).Google Scholar
  67. Jarausch, K. H., u.K. J. Ullrich: S.-B. Ges. Naturwiss. Marburg78, 3 (1955).Google Scholar
  68. —— Zur Technik der Entnahme von Harnproben aus einzelnen Sammelrohren der Säugetiere mittels Polyäthylen-Kapillaren. Pflügers Arch. ges. Physiol.264, 88 (1956).Google Scholar
  69. Kessler, R. H., K. Hierholzer, R. S. Gurd andR. F. Pitts: Localization of diuretic action of chlormerodrin in the nephron of the dog. Amer. J. Physiol.194, 540 (1958).PubMedGoogle Scholar
  70. Kirschner, L. B.: Effect of cholinesterase inhibitors and atropine on active Na-transport across frog skin. Nature (Lond.)172, 348 (1953).Google Scholar
  71. —: On the mechanism of active Na-transport across the frog skin. J. cell. comp. Physiol.45, 61 (1955).Google Scholar
  72. —: Effect of atropine and the curares on the active transport of Na by the skin of Rana esculenta. J. cell. comp. Physiol.45, 89 (1955).Google Scholar
  73. Kisch, B.: Biochemische Unterschiede zwischen Nierenrinde und Nierenmark. Biochem. Z.277, 210 (1935).Google Scholar
  74. Klümper, J. D., K. J. Ullrich andH. H. Hilger: Verhalten des Harnstoffs in den Sammelrohren der Säugetierniere. Pflügers Arch. ges. Physiol.267, 238 (1958).Google Scholar
  75. Koch, H. J.: Cholinesterase and active transport of sodium chloride through the isolated gills of the crab Eriocheir sinensis (M. Edw.). In: Recent developments in cell-physiology (ed.J. A. Kitching). London: Butterworth scientif. Publ. 1954.Google Scholar
  76. Koefoed-Johnsen, V., andH. H. Ussing: The contribution of diffusion and flow to the passage of D2O through living membranes. Effect of neurohypophyscal hormone on isolated anurian skin. Acta physiol. scand.28, 60 (1953).PubMedGoogle Scholar
  77. Kramer, K., u.K. Thurau: Hb.-Gehalt und Sauerstoffverbrauch des Kapillarblutes im Nierenmark. Pflügers Arch. ges. Physiol. 1959 (im Druck).Google Scholar
  78. —, u.K. J. Ullrich: O2-Sättigung und Hb-Gehalt des Kapillarblutes der Nierenrinde. Pflügers Arch. ges. Physiol.267, 251 (1958).Google Scholar
  79. Kuhn, R., u.D. Jerchel: Über Invertseifen. VIII. Reduktion von Tetrazoliumsalzen durch Bakterien, gärende Hefe und keimende Samen. Ber. dtsch. chem. Ges.74b, 949 (1941).Google Scholar
  80. Kurata, Y.: Histochemical demonstration of carbonic anhydrase activity. Stain Technol.28, 231 (1953).PubMedGoogle Scholar
  81. Lassen, N. A., J. B. Longley andL. S. Lilienfield: Concentration of albumin in renal papilla. Science128, 720 (1958).PubMedGoogle Scholar
  82. Leaf, A., J. Anderson andL. P. Page: Active sodium transport by the isolated toad bladder. J. gen. Physiol.41, 657 (1958).PubMedGoogle Scholar
  83. Le Page, G. A., in:W. W. Umbreil, R. H. Burris andJ. F. Stauffer, Manometric techniques. Mineapolis: Burgess Publishing Co. 1945.Google Scholar
  84. Levinsky, N. G., andR. W. Berliner: Change in composition of the urine in ureter and bladder at low urine flow. Amer. J. Physiol.196, 549 (1959).PubMedGoogle Scholar
  85. Levy, M. N.: Diffusion of oxygen from arterial to venous segments of renal capillaries. Fed. Proc.18, 91 (1959).Google Scholar
  86. Ljungberg, E.: On the reabsorption of chlorides in kidney of the rabbit. Acta med. scand. Suppl.186 (1947).Google Scholar
  87. Longley, J. B., andE. R. Fisher: Alkaline, phosphatase and the periodic acid Schiff reaction in the proximal tubule of the vertebrate kidney. Anat. Rec.120, 1 (1954).PubMedGoogle Scholar
  88. —,N. A. Lassen andL. S. Lilienfield: Tracer studies on renal medullary circulation. Fed. Proc.17, 99 (1958).Google Scholar
  89. Loveless, A., andJ. F. Danielli: A dye phosphate for the histo- and cytochemical demonstration of alkaline phosphatase, with some observations on the differential behaviour of nuclear and extranuclear enzymes. Quart. J. micr. Sci.90, 57 (1949).Google Scholar
  90. Malvin, R. L., W. S. Wilde andL. P. Sullivan: Localization of nephron transport by stop flow analysis. Amer. J. Physiol.194, 135 (1958).PubMedGoogle Scholar
  91. Manetti, E.: Richerche sulla lipasi nell’apparato urogenitale del uomo. I. La lipasi nel rene normale e patologico. Riv. Anat. pat.11, 327 (1956).PubMedGoogle Scholar
  92. Marshall, E. K.: The comparative physiology of the kidney in relation to the theories of renal secretion. Physiol. Rev.14, 133 (1934).Google Scholar
  93. McCann, W. P.: Quantitative histochemistry of the dog nephron. Amer. J. Physiol.185, 372 (1956).PubMedGoogle Scholar
  94. Menton, M. L., J. Junge andM. H. Green: A coupling histochemical azo-dye-test for alkaline phosphatase in the kidney. J. biol. Chem.153, 471 (1944).Google Scholar
  95. Mervin, L. andR. A. Morton: Unsaponifiable fraction of lipid from normal and diseased human kidney. Biochem. J.72, 106 (1959).Google Scholar
  96. Metzner, R.: In Handbuch der Physiologie des Menschen. Herausgeg. v.W. Nagel, S. 262. 1907.Google Scholar
  97. Meyer, H.: Über Diurese. Marburger Sitzungsber. 1902, S. 92.Google Scholar
  98. Meyerhof, O. The rates of glycolysis of glucose and fructose in extracts of brain. Arch. Biochem.13, 485 (1947).PubMedGoogle Scholar
  99. —, andN. Geliazkowa: The rate of anaerobic glycolysis of various hexoses in mammalian tissues. Arch. Biochem.12, 405 (1947).PubMedGoogle Scholar
  100. Möllendorff, W. v.: Handbuch der mikroskopischen Anatomie des Menschen, Bd. 7, I. Berlin: Springer 1930.Google Scholar
  101. Mudge, G. H.: Electrolyte and water metabolism of rabbit kidney slices: effect of metabolic inhibitors. Amer. J. Physiol.167, 206 (1951).PubMedGoogle Scholar
  102. Muntwyler, E., M. Iacobellis andG. E. Griffin: Kidney glutaminase and carbonic anhydrase activities and renal electrolyte excretion in rats. Amer. J. Physiol.184, 83 (1956).PubMedGoogle Scholar
  103. Nachlas, M. M., D. T. Crawford andA. M. Seligman: The histochem. demonstration of leucine aminopeptidase. J. Histochem. Cytochem.5, 264 (1957).PubMedGoogle Scholar
  104. —,W. Prinn andA. M. Seligman: Quantitative estimation of lyo- and desmoenzymes in tissue sections with and without fixation. J. biophys. biochem. Cytol.2, 487 (1956).PubMedGoogle Scholar
  105. —, andA. Seligman: The histochemical demonstration of esterase. J. nat. Cancer Inst.9, 415 (1949).PubMedGoogle Scholar
  106. Neish, W. J. P.: Histochemographical effect in rat kidneys. Nature (Lond.)173, 308 (1954).Google Scholar
  107. Oliver, J.: Mechanism of urea excretion. J. exp. Med.33, 177 (1921).PubMedGoogle Scholar
  108. —: Harvey Lect.40, 102 (1944/45).Google Scholar
  109. Opie, E. L., andM. B. Rothbard: Osmotic homeostasis maintained by mammalian liver, kidney and other tissues. J. exp. Med.97, 483 (1953).PubMedGoogle Scholar
  110. Padykula, H. A., andE. Herman: The specificity of the histochemical method for adenosine triphosphatase. J. Histochem. Cytochem.3, 170 (1955).PubMedGoogle Scholar
  111. Pearson, B., andV. Defendi: Histochem. demonstration of succinic-dehydrogenase in thin tissue sections by means of 2-(p-iodophenyl)-3-p-(nitrophenyl) 5-phenyl-tetrazoliumchloride under aerobic-conditions. J. Histochem. Cytochem.2, 248 (1954).PubMedGoogle Scholar
  112. ——: A comparison between the histochemical demonstration of non spezific esterase activity by 5-bromoindoxyl-acetate-α-naphthyl-acetate and naphthal-AS-acetate. J. Histochem. Cytochem.5, 72 (1957).PubMedGoogle Scholar
  113. Pease, D. C.: The finestructure of the kidney seen by electronmicroscopy. J. Histochem. Cytochem.3, 295 (1955).PubMedGoogle Scholar
  114. Peter, K.: Untersuchungen über Bau und Entwicklung der Niere. Jena 1909. u. 1927.Google Scholar
  115. Pitts, R. F.: Acid-base regulation by the kidneys. Amer. J. Med.9, 356 (1950) and Renal function (ed.S. E. Bradley). Fourth Conference. New York: Josiah Macy jr. Foundation 1952, p. 11. InPubMedGoogle Scholar
  116. —: Some reflections on mechanisms of action of Diuretics. Amer. J. Med.24, 745 (1958).PubMedGoogle Scholar
  117. —,R. S. Gurd, R. H. Kessler andK. Hierholzer: Localization of acidification of urine, potassium and ammonia secretion and phosphate reabsorption in the nephron of the dog. Amer. J. Physiol.194, 125 (1958).PubMedGoogle Scholar
  118. Policard, A.: La capacité des divers segments du tube urinair. Remarques à propos de recherches physiologiques récentes deM. O’Connor. Bull. Histol. appl.1, 209 (1924).Google Scholar
  119. —: Rectificatif à une note précédente sur la capacité du tube urinaire. Bull. Histol. apl.1, 498 (1924).Google Scholar
  120. Preto-Parvis, V., eS. Forni: Studio morfologico ed istochimico del tessuto connettivo propio della papilla renale. Riv. istochem. norm. et patol.1, 35 (1954).Google Scholar
  121. Reale, E., eL. Luzzatto: Contributo allo studio dell’attività succinodeidrogenasica in rene di mus musculus albinus. Richerche istochemiche con il neotetrazolio. Acta histochem. (Jena)3, 138 (1956/57).Google Scholar
  122. Rein, H., u.M. Schneider: Einführung in die Physiologie des Menschen. Berlin-Göttingen-Heidelberg: Springer 1956.Google Scholar
  123. Reis, J. L.: Studies on 5 nucleotidase and its distribution in human tissues. Biochem. J.46, XXI (1950).Google Scholar
  124. —: The specifity of phosphomonoesterases in human tissues. Biochem. J.48, 548 (1951).PubMedGoogle Scholar
  125. Rennie, D. W., R. B. Reeves andJ. R. Pappenheimer: Oxygen pressure in urine and its relation to intrarenal blood flow. Amer. J. Physiol.195, 120 (1958).PubMedGoogle Scholar
  126. Rhodin, J.: Electron microscopy of the kidney. Amer. J. Med.24, 661 (1958).PubMedGoogle Scholar
  127. Ribbert, H.: Resorption von Wasser in der Marksubstanz der Niere. Virchows Arch. pat. Anat.93, 169 (1883).Google Scholar
  128. Ribbert, H.: Beiträge zur normalen Physiologie der Niere. Bibl. medica, Abt. C., H. 4 (1896).Google Scholar
  129. Richterich van Baerle, R., L. Goldstein andE. H. Dearborn: Ammonia production in the collecting ducts of mammalian kidneys. Nature (Lond.)178, 698 (1956).Google Scholar
  130. Robinson, J. R.: Osmoregulation in surviving slices from the kidneys of adult rats. Proc. roy. Soc. B137, 378 (1950); B140, 135 (1952).Google Scholar
  131. Rollhäuser, H.: Polarisationsoptische und histochemische Untersuchungen über die Feinstruktur des Nephrons und ihre Beziehung zur Nierenfunktion. Z. Zellforsch.44, 57 (1956).PubMedGoogle Scholar
  132. Rutenburg, A. M., S. H. Rutenburg, B. Monis, R. Teague andA. M. Seligman: Histochemical demonstration of β-d-Galactosidase in the rat. J. Histochem. Cytochem.6, 122 (1958).PubMedGoogle Scholar
  133. Schimassek, H., D. Kohl u.Th. Bücher: Glycerylphosphorylcholin, die Nierensubstanz „Ma-Mark” vonUllrich. Biochem. Z.331, 87 (1959).Google Scholar
  134. Schmidt-Nielsen, B.: Urea excretion in mammals. Physiol. Rev.38, 139 (1958).PubMedGoogle Scholar
  135. —, andR. O’Dell: Distribution and active uptake of urea in renal tissue. Fed. Proc.18, 138 (1959).Google Scholar
  136. Schmör, J.: Zur Frage der Amylaserückresorption in den Nierentubulis. Ber. ges. Physiol. u. exp. Pharmacol.180, 131 (1956).Google Scholar
  137. Scholander, P. F.: The wonderful net. Sci. Amer.196, 97 April (1957).Google Scholar
  138. Seligman, A. M., Kwan-Chung Tsou, S. H. Rutenburg andR. B. Cohen: Histochemical demonstration of β-d-glucuronidase with a synthetic substrate. J. Histochem. Cytochem.2, 209 (1954).PubMedGoogle Scholar
  139. —, andS. H. Rutenburg: The histochemical demonstration of succinic dehydrogenase. Science113, 317 (1951).PubMedGoogle Scholar
  140. Shannon, J. A.: Glomerular filtration and urea excretion in relation to urine flow in the dog. Amer. J. Physiol.117, 206 (1936).Google Scholar
  141. Sjöstrand, F. S., andJ. Rhodin: The ultrastructure of the proximal convoluted tubules of the mouse kidney as revealed by high resolution electron microscopy. J. exp. cell Res.4, 426 (1953).Google Scholar
  142. Smith, H.: The kidney. Structure and function in health and disease. New York: Oxford University Press 1951.Google Scholar
  143. Spater, H. W., A. B. Novikoff andB. Masek: AT-Pase activity in the cell membrane of kidney tubule cells. J. biophys. biochem. Cytol.4, 765 (1958).PubMedGoogle Scholar
  144. Sperber, I.: Studies on the mammalian kidney. Zool. Bidrag Uppsala22, 249 (1944)Google Scholar
  145. Spicer, S. S.: Histological localization of glycogen in the urinary tract and lung. J. Histochem. Cytochem.6, 52 (1958).PubMedGoogle Scholar
  146. Sternberg, W. H., E. Farber andC. E. Dunlap: Histochemical localization of spezific oxydative enzymes. II. Localization of DPN- and TPN-diaphorase and the succindehydrogenase system in the kidney. J. Histochem. Cytochem.4, 266 (1956).PubMedGoogle Scholar
  147. Swanson, M. A.: Phosphatases of liver. I. Glucose 6-phosphatase. J. biol. Chem.184, 647 (1950).PubMedGoogle Scholar
  148. Takeuchi, T., K. Higashi andS. Watanuki: Distribution of amylophosphorylase in various tissues of human and mammalian organs. J. Histochem. Cytochem.3, 485 (1955).PubMedGoogle Scholar
  149. Thiele, O. W.: Der heutige Stand der Kenntnisse über die Acetalphosphatide. Ärztl. Forsch.10, I, 363 (1956).Google Scholar
  150. Thurau, K., P. Deetjen u.K. Kramer: Farbkonzentrationskurven, Erythrocytenpassage und kapilläre O2-Sättigung im Nierenmark. 25. Tagg Dtsch. Physiol. Ges. 14. 5. 1959, Bad Nauheim.Google Scholar
  151. Ullrich, K. J., F. O. Drenckhahn u.K. H. Jarausch: Untersuchungen zum Problem der Harnkonzentrierung und-Verdünnung. Über das osmotische Verhalten von Nierenzellen und die begleitende Elektrolytanhäufung im Nierengewebe bei verschiedenen Diuresezuständen. Pflügers Arch. ges. Physiol.261, 62 (1955).Google Scholar
  152. —,F. W. Eigler u.G. Pehling: Sekretion von Wasserstoffionen in den Sammelrohren der Säugetierniere. Pflügers Archiv ges. Physiol.267, 491 (1958).Google Scholar
  153. —,H. H. Hilger u.J. D. Klümper: Sekretion von Ammoniumionen in den Sammelrohren der Säugetierniere. Pflügers Arch. ges. Physiol.267, 244 (1958b).Google Scholar
  154. —, u.K. H. Jarausch: Untersuchungen zum Problem der Harnkonzentrierung und-Verdünnung. Über die Verteilung der Electrolyten (Na, K, Ca, Mg, Cl, anorg. Phosphat), Harnstoff, Aminosäuren und exogenem Kreatinin in Rinde und Mark der Hundeniere bei verschiedenen Diuresezuständen. Pflügers Arch. ges. Physiol.262, 537 (1956).Google Scholar
  155. —, u.G. Pehling: Über das Vorkommen von Phosphorverbindungen in verschiedenen Nierenabschnitten und änderung ihrer Konzentration in Abhängigkeit vom Diuresezustand. Pflügers Arch. ges. Physiol.262, 551 (1956).Google Scholar
  156. ——: Aktiver Natriumtransport und Sauerstoffverbrauch in der äußeren Markzone der Niere. Pflügers Arch. ges. Physiol.267, 207 (1958).Google Scholar
  157. ——: Glycerylphosphorylcholin-Umsatz und Glycerylphosphorylcholin-Diesterase in der Säugetierniere. Biochem. Z.331, 98 (1959).Google Scholar
  158. Ussing, H. H.: Ion transport across living membranes, in: Renal function (ed.S. E. Bradley). Fourth Conference, New York: Josiah Macy jr. Foundation 1952, S. 88.Google Scholar
  159. —, andK. Zerahn: Active transport of sodium as a source of electric current in the short-circuited isolated frog skin. Acta physiol. scand.23, 110 (1951).PubMedGoogle Scholar
  160. Vander, A. J., R. L. Malvin, W. S. Wilde andL. P. Sullivan: Localization of the site of action of mercurial diuretics by stop flow analysis. Amer. J. Physiol.195, 558 (1958).PubMedGoogle Scholar
  161. Vimtrup, B.: Histological examinations of kidneys of Heteromyidae. Scand. J. clin. Lab. Invest.1, 339 (1949).Google Scholar
  162. —, andB. Schmidt-Nielsen: The histology of the kidney of kangaroo rats. Anat. Rec.114, 515 (1952).PubMedGoogle Scholar
  163. Wachstein, M.: Histochemical staining reactions of the normally functioning and abnormal kidney. J. Histochem. Cytochem.3, 246 (1955).PubMedGoogle Scholar
  164. —, andE. Meisel: On the histochemical demonstration of glucose-6-phosphatase. J. Histochem. Cytochem.4, 592 (1956).Google Scholar
  165. Weil, L., andJ. O. Ely: Inverstigations in enzymatic histochemistry I. Distribution of arginase activity in rabbid kidney. J. biol. Chem.112, 565 (1935/36).Google Scholar
  166. —, andR. K. Jennings: Investigation in enzymatic histochemistry. III. Distribution of anzyms in rabbit kidney. J. biol. Chem.139, 421 (1941).Google Scholar
  167. Weiss, L. P., Kwan Chung Tsou andA. M. Seligman: Histochemical demonstration of protein bound amino-groups. J. Histochem. Cytochem.2, 29 (1954).PubMedGoogle Scholar
  168. Wilbrandt, W.: Secretions and transport of non-electrolytes. Symp. Soc. exp. Biol.8, 136 (1954).Google Scholar
  169. Wilde, W. S., andR. L. Malvin: Graphical placement of transport segments along the nephron from urine concentration pattern developed with spop flow technique. Amer. J. Physiol.195, 153 (1958).Google Scholar
  170. Wirz, H.: Der osmotische Druck des Blutes in der Nierenpapille. Helv. physiol. pharmacol. Acta11, 20 (1953).PubMedGoogle Scholar
  171. —: Der osmotische Druck in den corticalen Tubuli der Rattenniere. Helv. physiol. pharmacol. Acta14, 353 (1956).PubMedGoogle Scholar
  172. —,B. Hargitay u.W. Kuhn: Lokalisation des Konzentrierungsprozesses in der Niere durch direkte Kryoskopie. Helv. physiol. pharmacol. Acta9, 196 (1951).PubMedGoogle Scholar
  173. Zerahn, K.: Oxygen consumption and active sodium transport in the izolated and short-circuited frog skin. Acta physiol. scand.36, 300 (1956).PubMedGoogle Scholar
  174. Zimmermann, K. W.: Zur Morphologie der Epithelzellen der Säugetierniere. Arch. mikr. Anat.78, 119 (1911).Google Scholar

Copyright information

© Springer-Verlag 1959

Authors and Affiliations

  • K. J. Ullrich
    • 1
  1. 1.Physiologisches Institut der Universität GöttingenGöttingenDeutschland

Personalised recommendations