Ionic movements in cell membranes in relation to the activity of the nervous system

  • Hans H. Ussing
Conference paper
Part of the Ergebnisse der Physiologie, biologischen Chemie und experimentellen Pharmakologie book series (ERGEBPHYSIOL, volume 50)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hodgkin, A. L., A. F. Huxley andB. Katz: Ionic currents underlying activity in the giant axon of the squid. Arch. Sci. physiol.3, 129–150 (1949).Google Scholar
  2. 2.
    ——: Currents carried by sodium and potassium ions through the membrane of the giant axons of Loligo J. Physiol. (Lond.)116, 449–472 (1952).Google Scholar
  3. 3.
    ——: The components of membrane conductance in the giant axon of Loligo. J. Physiol. (Lond.)116, 473–496 (1952).Google Scholar
  4. 4.
    ——: The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J. Physiol. (Lond.)116, 497–506 (1952).Google Scholar
  5. 5.
    ——: A quantitative description of membrane current and its application to conduction and exitation in nerve. J. Physiol. (Lond.)117, 500–544 (1952).Google Scholar
  6. 6.
    —, andR. D. Keynes: Movement of cations during recovery in nerve. Symp. Soc. exp. Biol.8, 423–437 (1954).Google Scholar
  7. 7.
    Caldwell, P. C., andR. D. Keynes: The utilization of phosphate bond energy for sodium extrusion from giant axons. J. Physiol. (Lond.)137, 12P-13P (1957).Google Scholar
  8. 8.
    Hodgkin, A. L., andR. D. Keynes: Active transport of cations in giant axons from Sepia and Loligo. J. Physiol. (Lond.)128, 28–60 (1955).Google Scholar
  9. 9.
    Shanes, A. M., andM. D. Berman: Kinetics of ion movement in the squid giant nerve. J. gen. Physiol.39, 279–300 (1955).PubMedCrossRefGoogle Scholar
  10. 10.
    Hodgkin, A. L.: The ionic basis of electrical activity in nerve and muscle. Biol. Rev.26, 339–409 (1951).CrossRefGoogle Scholar
  11. 11.
    Ling, G. N.: The role of phosphorous in the maintenance of the resting potential and selective ionic accumulation in frog muscle cells. In: Phosphorous Metabolism, vol. II, edit. byW. D. McElroy andB. Glass, p. 748–795. Baltimore: Johns Hopkins Press 1952.Google Scholar
  12. 12.
    Ussing, H. H.: Some aspects of the application of tracers in permeability studies. Avanc. Enzymol.13, 21–65 (1952).Google Scholar
  13. 13.
    Blinks, L. R.: Protoplasmic potentials in Halicystis. J. gen. Physiol.18, 409 (1935).PubMedCrossRefGoogle Scholar
  14. 14.
    Ussing, H. H., andK. Zerahn: Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta physiol. scand.23, 110–127 (1951).PubMedCrossRefGoogle Scholar
  15. 15.
    MacRobbie, E. A. C., andJ. Dainty: Ion transport in Nitellopsis obtusa. J. gen. Physiol.42, 335–358 (1958).PubMedCrossRefGoogle Scholar
  16. 16.
    Ussing, H. H., andB. Andersen: The relation between solvent drag and active transport of ions. Proc. third Internat. Congr. Biochem., Brussels, 1955. New York: Academic Press 1956.Google Scholar
  17. 17.
    Leaf, A.: Ion transport by the isolated bladder of the toad. Res. Comm. 3. Internat. Congr. Biochem., Brussels, 1955. New York: Academic Press 1956.Google Scholar
  18. 18.
    Chalfin, D., I. L. Cooperstein andC. A. M. Hogben: Ionic transfer across the isolated bullfrog large intestine. Fed. Proc.16, 24 (1957).Google Scholar
  19. 19.
    Dobson, A.: The forces moving sodium ions through rumen epithelium. J. Physiol. (Lond.)128, 39P-40P (1955).Google Scholar
  20. 20.
    Dobson, A., andA. T. Phillipson: The movements of ions across the reticulo-rumen sack Abstr. Comm. XXth Internat. Physiol. Congr., Brussels, 1956.Google Scholar
  21. 21.
    Ussing, H. H.: Active transport of inorganic ions. Symp. Soc. exp. Biol.8, 407 to 422 (1954).Google Scholar
  22. 22.
    —: General principles and theories of membrane transport. In: Metabolic aspects of transport across cell membranes. Edit. byQ. R. Murphy. Madison: University of Wisconsin Press 1957.Google Scholar
  23. 23.
    Koefoed-Johnsen, V., H. H. Ussing andK. Zerahn: The origin of the shortcircuit current in the adrenaline stimulated frog skin. Acta physiol. scand.27, 38–48 (1952).PubMedCrossRefGoogle Scholar
  24. 24.
    Zerahn, K.: Oxygen consumption and active sodium transport in the isolated and short-circuited frog skin. Acta physiol. scand.36, 300–318 (1956).PubMedCrossRefGoogle Scholar
  25. 25.
    Leaf, A., andA. Renshaw: Ion transport and respiration of isolated frog skin. Biochem. J.65, 82–90 (1957).PubMedGoogle Scholar
  26. 26.
    Lundeg⇘rdh, H.: Untersuchungen über die Anionenatmung. Biochem. Z.290, 104–124 (1937).Google Scholar
  27. 27.
    Chance, B., andG. R. Williams: The respiratory chain and Oxidative metabolism. Advanc. Enzymol.17, 65–134 (1956).Google Scholar
  28. 28.
    Koefoed-Johnsen, V., andH. H. Ussing: The nature of the frog skin potential. Acta physiol. scand.42, 298–308 (1958).PubMedCrossRefGoogle Scholar
  29. 29.
    Hogben, C. A. M.: Active transport of chloride by isolated frog gastric epithelium. Origin of the gastric mucosal potential. Amer. J. Physiol.180, 641–649 (1955).PubMedGoogle Scholar
  30. 30.
    Glynn, I. M.: The ionic permeability of the red cell membrane. Progr. Biophysics.8, 241–307 (1957).Google Scholar
  31. 31.
    Harris, E. J.: Linkage of sodium- and potassium active transport in human erythrocytes. Symp. Soc. exp. Biol.8, 228–241 (1954).Google Scholar
  32. 32.
    Keynes, R. D.: The ionic fluxes in frog muscle. Proc. roy. Soc. B142, 359–382 (1954).CrossRefGoogle Scholar
  33. 33.
    Linderholm, H.: Active transport of ions through frog skin with special reference to the action of certain diuretics. Acta physiol. scand. Suppl.97, 1–144 (1952).Google Scholar

Copyright information

© Springer-Verlag 1959

Authors and Affiliations

  • Hans H. Ussing
    • 1
  1. 1.Department of Biological Isotope Research, Zoophysiological LaboratoryUniversity of CopenhagenDenmark

Personalised recommendations