Skip to main content

Comparing the UK Fine Resolution Antarctic Model (FRAM)

With 3-years of Geosat altimeter data

  • Seminars
  • Chapter
  • First Online:
Book cover Satellite Altimetry in Geodesy and Oceanography

Part of the book series: Lecture Notes in Earth Sciences ((LNEARTH,volume 50))

  • 512 Accesses

Abstract

The United Kingdom Fine Resolution Antarctic Model is compared to 3 years of Geosat altimeter data. To enable a proper comparison two analysis techniques (Fourier and principal component analysis) are applied to both model results and the “real ocean” altimeter observations. In general it was found that the model succeeded in simulating important characteristics of the southern ocean. The analysis results from the very complex altimeter observations were verified, and the interpretation of Geosat data was strongly improved. The applied analysis techniques where shown to be effective in isolating ring-like phenomena and detecting possible periodic behaviour. In both the Agulhas, Brazil Malvinas, and East Australian Current regular ring formations take place, roughly every 100, 150, and 130 days respectively. The model only generated periodic ring formations in the Agulhas and East Australian Current, both with a very regular 125–130 days period. This period is clearly a model favored harmonic (1/3 year) which is however surprisingly close to the observations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bretherton, F.P., R.E. Davis, and C.B. Fandry, A technique for objective analysis and design of oceanographic experiments applied to MODE-73, Deep Sea Res., 23, 559–582, 1976.

    Google Scholar 

  • Chelton, D.B., M.G. Schlax, D.L. Witter, and J.D. Richman, Geosat altimeter observations of the surface circulation of the Southern Ocean, J. Geophys. Res., 95, (C10), 17,877–17,903, 1990.

    Google Scholar 

  • Cheney R.E., J.G. Marsh, and B.D. Beckley, Global mesoscale variability from collinear tracks of SEASAT altimeter data, J. Geophys. Res., 88, (C7), 4343–4354, 1983.

    Google Scholar 

  • Cheney, R.E., B.C. Douglas, R.W. Agreen, L. Miller, D.L. Porter, and N.S. Doyle, Geosat altimeter geophysical data record user handbook, NOAA Techn. Memo. NOS NGS-46, Natl. Oceanic and Atmos. Admin. Rockville, Md., 1987.

    Google Scholar 

  • Cox, M.D., A primitive equation, 3-dimensional model of the ocean, GFDL, Ocean Gr. Tech. Rep., 1, 1984.

    Google Scholar 

  • De Ruijter, W.P.M., Asymptotic analysis of the Agulhas and Brazil Current Systems, J. Phys. Oceanogr., 12, 361–373, 1982.

    Article  Google Scholar 

  • Dewar W., Ventilating warm rings: Theory and energetics, J. Phys. Oceanogr., 17, 2219–2231, 1987.

    Article  Google Scholar 

  • Feron, R.C.V., W.P.M. De Ruijter, and D. Oskam, Ring-shedding in the Agulhas Current System, J. Geophys. Res., 97, 9467–9477, 1992.

    Google Scholar 

  • Feron, R.C.V., M.C. Naeije, and D. Oskam, Quality estimates for ocean variability results from satellite altimetry, Mar. Geodesy, 15, 1–18, 1991.

    Google Scholar 

  • Garzoli, S.L., and Z. Garraffo, Transports, frontal motions and eddies at the Brazil-Malvinas Currents Confluence, Deep Sea Res., 36, 681–703, 1989.

    Article  Google Scholar 

  • Gordon, A.L., Interocean exchange of thermocline water, J. Geophys. Res., 91 (C4), 5037–5046, 1986.

    Google Scholar 

  • Gordon, A.L., J.R.E. Lutjeharms, and M.L. Gründlingh, Stratification and circulation at the Agulhas Retroflection, Deep Sea Res., 34, 565–599, 1987.

    Article  Google Scholar 

  • Gordon, A.L., and W.F. Haxby, Agulhas eddies invade the South Atlantic-Evidence from Geosat altimeter and shipboard CTD, J. Geophys. Res., 95, (C3), 3117–3125, 1990.

    Article  Google Scholar 

  • Gordon, A.L., R.F. Weiss, W.M. Smethie, Jr., and M.J. Warner, Thermocline and intermediate water communication between the South Atlantic and Indian Oceans, J. Geophys. Res., 97, (C5), 7223–7240, 1992.

    Google Scholar 

  • Hellerman, S., and M. Rosenstein, Normal monthly wind stress over the world ocean with error estimates, J. Phys. Oceanogr., 13, 1093–1104, 1983.

    Article  Google Scholar 

  • Kelly, K., Comment on “Empirical orthogonal function analysis of advanced very high resolution radiometer surface temperature patterns in Santa Barbara Channel” by G.S.E. Lagerloef and R.L. Bernstein, J. Geophys. Res., 93 15,753–15,754, 1988.

    Google Scholar 

  • Legeckis, R., and A.L. Gordon, Satellite observations of the Brazil and Falklands currents-1975 to 1976 and 1978, Deep Sea Res., 29, 275–401, 1982.

    Google Scholar 

  • Levitus, S., Climatological atlas of the world ocean, NOAA, Prof. Pap., 13 U.S. Dept. of Commerce, 173 pp, 1982.

    Google Scholar 

  • Lutjeharms J.R.E., Meridional heat transport across the Sub-tropical Convergence by a warm eddy, Nature, 331, 251–254, 1988.

    Article  Google Scholar 

  • Lutjeharms, J.R.E., and R.C. van Ballegooyen, The retroflection of the Agulhas Current, J. Phys. Oceanogr., 18, 1570–1583, 1988.

    Article  Google Scholar 

  • Milbert, D., B. Douglas, R. Cheney, L. Miller, and R. Agreen, Calculation of Sea Level Time Series from non-collinear Geosat altimeter data, Mar. Geod., 12, 287–302, 1988.

    Google Scholar 

  • Moritz, H., Advanced Physical Geodesy, Herbert Wichman Verlag, Karlsruhe, Germany, 1980.

    Google Scholar 

  • Mulhearn, P.J., The Tasman front: a study using satellite infrared imagery, J. Phys. Oceanogr., 17, 1148–1155, 1987.

    Article  Google Scholar 

  • Nilsson, C.S., and G.R. Cresswell, The formation and evolution of East Australian Current warm-core eddies, Prog. Oceanogr., 9, 133–183, 1981.

    Article  Google Scholar 

  • Park, Y-H., Evidence of semiannual baroclinic Rossby waves south of the Indian Ocean from satellite altimetry, C.R. Acad. Sci. Paris, 310, Ser. II, 919–926, 1990.

    Google Scholar 

  • Parke M.E., R.H. Steward, D.L. Farless, and D.E. Cartwright, On the choice of orbits for an altimeter satellite to study ocean circulation and tides, J. Geophys. Res., 92, (C11), 11693–11707, 1987.

    Article  Google Scholar 

  • Preisendorfer R.W. (1988) Principal Component Analysis in Meteorology and Oceanography, Developments in Atmospheric Science 17, Elsevier, 1988.

    Google Scholar 

  • Rintoul, S.R. South Atlantic interbasin exchange, J. Geophys. Res., 96, (C2), 2675–2692, 1991.

    Google Scholar 

  • Roden, G. I., Thermohaline fronts and baroclinic flow in the Argentine Basin during the austral spring of 1984, J. Geophys. Res. 91, 5075–5093, 1986.

    Google Scholar 

  • Semtner, A. J., and R. M. Chervin, A simulation of the global ocean circulation with resolved eddies, J. Geophys. Res., 93, 15502–15522, 1988.

    Google Scholar 

  • Stevens, D. P., On open boundary conditions for three-dimensional primitive equation ocean circulation models. Geophys. and Astrophys. Fluid Dyn., 51, 103–133, 1990.

    Article  Google Scholar 

  • Webb, D.J. et al. (The FRAM Group), An Eddy-resolving model of the Southern Ocean. EOS, Vol. 72, 15, 169, 174, 175, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Reiner Rummel Fernando Sansò

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag

About this chapter

Cite this chapter

Feron, R.C.V. (1993). Comparing the UK Fine Resolution Antarctic Model (FRAM). In: Rummel, R., Sansò, F. (eds) Satellite Altimetry in Geodesy and Oceanography. Lecture Notes in Earth Sciences, vol 50. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0117936

Download citation

  • DOI: https://doi.org/10.1007/BFb0117936

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56818-6

  • Online ISBN: 978-3-540-47758-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics