GPS carrier phase ambiguity fixing concepts

  • Peter J. G. Teunissen
Part of the Lecture Notes in Earth Sciences book series (LNEARTH, volume 60)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbot, R. I., C. C. Counselman III, S. A. Gourevitch (1989): GPS Orbit Determination: Bootstrapping to Resolve Carrier Phase Ambiguity. Proceedings of the Fifth International Symposium on Satellite Positioning, Las Cruces, New Mexico, pp. 224–233.Google Scholar
  2. Allison, T. (1991): Multi-Observable Processing Techniques for Precise Relative Positioning. Proceedings ION GPS-91. Albuquerque, New Mexico, 11–13 September 1991, pp. 715–725.Google Scholar
  3. Baarda, W. (1968): A Testing Procedure for Use in Geodetic Networks, Netherlands Geodetic Commission, Publications on Geodesy, New Series, Vol. 2, No. 5.Google Scholar
  4. Betti, B., M Grespi, and F. Sanso (1993): A Geometric Illustration of Ambiguity Resolution in GPS Theory and a Bayesian Approach, Manuscripta Geodaetica 18: 317–330.Google Scholar
  5. Blewitt, G. (1989): Carrier Phase Ambiguity Resolution for the Global Positioning System Applied to Geodetic Baselines up to 2000 km. Journal of Geophysical Research, Vol. 94, No. B8, pp. 10.187–10.203.CrossRefGoogle Scholar
  6. Cocard, C., A Geiger (1992): Systematic Search for all Possible Widelanes. Proceedings 6th Int. Geod. Symp. on Satellite Positioning. Columbus, Ohio, 17–20 March 1992.Google Scholar
  7. Counselman, C. C., S. A. Gourevitch (1981): Miniature Interferometer Terminal for Earth Surveying: Ambiguity and Multipath with Global Positioning System. IEEE Transactions an Geoscience and Remote Sensing, Vol. GE-19, No. 4, pp. 244–252.CrossRefGoogle Scholar
  8. Erickson, C. (1992): Investigations of C/A code and carrier measurements and techniques for rapid static GPS surveys. Report no. 20044, Department of Geomatics Engineering, Calgary, Alberta, Canada.Google Scholar
  9. Euler, H.-J., C. Goad (1990): On Optimal Filtering of GPS Dual Frequency Observations without using Orbit Information. Bulletin Geodesique, Vol. 65, pp. 130–143.CrossRefGoogle Scholar
  10. Euler, H.-J., B. Schaffrin (1991): On a Measure for the Discernability between Different Ambiguity Resolutions in the Static-Kinematic GPS-mode. Proceedings of IAG International Symposium 107 on Kinematic Systems in Geodesy, Surveying and Remote Sensing, Sept. 10–13 1990, Springer Verlag, New York, pp. 285–295.Google Scholar
  11. Euler, H.,-J., H. Landau (1992): Fast GPS Ambiguity Resolution On-The-Fly for Real-Time Applications. Proceedings 6th Int. Geod. Symp. on Satellite Positioning. Columbus, Ohio, 17–20 March 1992, pp. 650–729.Google Scholar
  12. Frei, E., G. Beutler (1990): Rapid Static Positioning Based on the Fast Ambiguity Resolution Approach FARA: Theory and First Results. Manuscripta Geodaetica, Vol. 15, No. 6, 1990.Google Scholar
  13. Frei, E. (1991): Rapid Differential Positioning with the Global Positioning System. In: Geodetic and Geophysical Studies in Switzerland, Vol 44.Google Scholar
  14. Goad, C. (1992): Robust Techniques for Determining GPS Phase Ambiguities. Proceedings 6th Int. Geod. Symp. on Satellite Positioning. Columbus, Ohio, 17–20 March 1992, pp. 245–254.Google Scholar
  15. Goad, C., M. Yang (1994): On Automatic Precision Airborne GPS Positioning. Proceedings of the International Symposium on Kinematic Systems in Geodesy, Geomatics and Navigation KIS'94. Banff, Alberta, Canada. August 30–September 2, 1994, pp. 131–138.Google Scholar
  16. Golub, G. H. and C.F. Van Loan (1986): Matrix Computations. North Oxford Academic.Google Scholar
  17. Hatch, R. (1986): Dynamic differential GPS at the Centimeter Level. Proceedings 4th International Geod. Symp. in Satellite Positioning, Austin, Texas, 28 April–2 May, pp.1287–1298.Google Scholar
  18. Hatch, R. (1989): Ambiguity Resolution in the Fast Lane. Proceedings ION GPS-89, Colorado Springs, CO, 27–29 September, pp. 45–50.Google Scholar
  19. Hatch, R. (1991): Instantaneous Ambiguity Resolution. Proceedings of IAG International Symposium 107 on Kinematic Systems in Geodesy, Surveying and Remote Sensing, Sept. 10–13. 1990, Springer Verlag, New York, pp. 299–308.Google Scholar
  20. Hatch, R., H.-J. Euler (1994): A Comparison of Several AROF Kinematic Techniques. Proceedings of ION GPS-94, Salt Lake City, Utah, USA, pp. 363–370.Google Scholar
  21. Hofmann-Wellenhof, B., B.W. Remondi (1988): The Antenna Exchange: one Aspect of High-Precision Kinematic Survey. Presented at the International GPS Workshop, GPS Techniques Applied to Geodesy and Surveying, Darmstadt, FRG, 10–13 April.Google Scholar
  22. Jong, C. de (1994): Real-Time integrity monitoring of single and dual frequency GPS observation. In: GPS-nieuwsbrief, 9e jaargang, no. 1, mei 1994.Google Scholar
  23. Jonge de P.J. and C.C.J.M. Tiberius (1994): A new GPS ambiguity estimation method based on integer least-squares. Proceedings Third International Symposium on Differential Satellite Navigation Systems DSNS'94. London, England, April 18–22, 1994, paper no. 73.Google Scholar
  24. Kleusberg A. (1990): A Review of Kinematic and Static GPS Surveying Procedures. Proceedings of the Second International Symposium on Precise Positioning with the global Positioning system, Ottawa, Canada, September 3–7 1990, pp. 1102–1113.Google Scholar
  25. Koch, K. R. (1987): Parameter Estimation and Hypothesis Testing in Linear Models, Springer Verlag.Google Scholar
  26. Merel, H. v.d. (1990): Statistical Testing and Quality Analysis of GPS Networks. In: Proceedings Second International Symposium on Precise Positioning with the Global Positioning System. Ottawa, 3–7 September 1990. pp. 935–949.Google Scholar
  27. Mervart, L., G. Beutler, M. Rothacher, U. Wild (1994): Ambiguity Resolution Strategies using the Results of the International GPS Geodynamics Service (IGS) Bulletin Geodesique, 68: 29–38.CrossRefGoogle Scholar
  28. Remondi, B. W. (1984): Using the Global Positioning System (GPS) Phase Observables for Relative Geodesy: Modelling, Processing, and Results, Ph.D. Dissertation, NOAA, Rockville, 360 pp.Google Scholar
  29. Remondi, B.W. (1986): Performing Centimeter-Level Surveys in Seconds with GPS Carrier Phase; Initial Results. Journal of Navigation, Volume III, the Institute of Navigation.Google Scholar
  30. Remondi, B. W. (1991): Pseudo-Kinematic GPS Results Using the Ambiguity Function Method, Journal of Navigation, vol. 38, No. 1, pp. 17–36.Google Scholar
  31. Rothacher, M. (1993): Bernese GPS Software Version 3.4: Documentation. University of Berne, Switzerland.Google Scholar
  32. Scheffé, H. (1956): The Analysis of Variance, John Wiley and Sons.Google Scholar
  33. Seeber, G. G. Wübbena (1989): Kinematic Positioning With Carrier Phases and “On the Way” Ambiguity Solution. Procceddings 5th Int. Geod. Symp. on Satelite Positioning. Las Cruces, New Mexico, March 1989.Google Scholar
  34. Teunissen, P. J. G., M. A. Salzmann (1989): A Recursive Slippage Test for Use in State-Space Filtering. Manuscripta Geodaetica, 1989, 14: 383–390.Google Scholar
  35. Teunissen, P. J. G. (1990a): Quality Control in Integrated Navigation Systems. IEEE Aerospace and Electronic Systems Magazine, Vol.5, No. 7, pp. 35–41.CrossRefGoogle Scholar
  36. Teunissen, P. J. G. (1990b): GPS op afstand bekeken (in Dutch). In: Een halve eeuw in de goede richting. Lustrumboek Snellius 1950–1990, pp. 215–233.Google Scholar
  37. Teunissen, P. J. G. (1993a): Least-Squares Estimation of the Integer GPS Ambiguities. Delft Geodetic Computing Centre (LGR), 16p. Invited Lecture, Section IV Theory and Methodology. IAG General meeting, Beijing, China, August 1993. Also in LGR-Series no. 6.Google Scholar
  38. Teunissen, P.J.G. (1993b): The Invertible GPS Ambiguity Transformations. Delft Geodetic-Computing Centre (LGR), LGR-report No. 9, 9p.Google Scholar
  39. Teunissen, P.J.G. (1994a): A New Method for Fast Carrier Phase Ambiguity Estimation. IEEE Position Location and Navigation Symposium PLANS'94 Las Vegas, April 1994, pp. 562–573.Google Scholar
  40. Teunissen, P.J.G. (1994b): The Least-Squares Ambiguity Decorrelation Adjustment: A Method for Fast GPS Integer Ambiguity Estimation. Delft Geodetic Computing Centre (LGR), LGR-report No. 9, 18p.Google Scholar
  41. Teunissen, P.J.G. (1994c): Testing Theory-An Introduction. Lecture Notes Seris Mathematical Geodesy. Department of Geodetic Engineering, Delft University of Technology.Google Scholar
  42. Teunissen, P.J.G. (1994d): On the GPS Double-Difference Ambiguities and their Partial Search Spaces. Hotine-Marussi Symposium on Mathematical Geodesy, L'Aquila, Italy, May 29–June 3, 1994, 10 p.Google Scholar
  43. Teunissen, P.J.G. and C.C.J.M. Tiberius (1994): Integer Least-Squares Estimation of the GPS Phase Ambiguities. Proceedings of the International Symposium on Kinematic Systems in Geodesy, Geomatics and Navigation KIS'94. Banff, Alberta, Canada. August 30–September 2, 1994, pp. 221–231.Google Scholar
  44. Teunissen, P.J.G., P.J. de Jonge and C.C.J.M. Tiberius (1994): On the Spectrum of the GPS DD-ambiguities. Proceedings of ION GPS-94, 7th International Technical Meeting of the Satellite Division of the Institute of Navigation. Salt Lake City, Utah, USA. September 20–23, 1994, pp. 115–124.Google Scholar
  45. Wübbena, G. (1989): The GPS Adjustment Software Package-GEONAP-Concepts and Models. Proceedings 5th Int. Geod. Symp. on Satellite Positioning. Las Cruces, New Mexico, 13–17 March 1989, pp. 452–461.Google Scholar
  46. Wübbena, G. (1991): Zur Modellierung von GPS Beobachtungen fur die Hochgenaue Positionsbestimmung, Hannover, 1991.Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Peter J. G. Teunissen
    • 1
  1. 1.Department of Geodetic EngineeringDelft University of TechnologyDelftThe Netherlands

Personalised recommendations