Advertisement

Paleoclimate reconstruction at the Pleistocene/Holocene transition—A varve dated microstratigraphic record from Lake Meerfelder Maar (Westeifel, Germany)

A contribution to the discussion on the Younger Dryas climatic oscillation
  • D. Poth
  • J. F. W. Negendank
Sedimentology
Part of the Lecture Notes in Earth Sciences book series (LNEARTH, volume 49)

Abstract

Along two cross-sections 27 sediment cores were taken from Lake Meerfelder Maar.

Microstratigraphic studies have been carried out on one of these annually laminated, high resolution sediment sequences, subdivided by local lithozones. Using sediment increase rates, accumulation rates and the structure of varves it was possible to prove rapid climatic variations at the Pleistocene/Holocene transition.

The boundaries of local lithozones and their corresponding biozones are calculated in varve years BP (=v.y. BP, ref. year 1950).

The Younger Dryas is a tripartite sequence characterized by lithozones M3a-c. Lithozone M2 characterizes organic deposits of the Late Glacial with Laacher See Tephra (LST) close to its top. The base of Younger Dryas (M2/M3a) is dated to 11.070 v. y. BP. After this period of rapid cooling a dramatic sedimentary change to clay-silt-laminations occurs at 10.850 v. y. BP characterizing the main Younger Dryas climatic deterioration (M3b). From now on soil erosion dominates due to open tundra-like vegetation of the periglacial environment, causing clastic deposition rich in sand and silt. After around 140 years organic sedimentation reappears abruptly and allochthonous minerogenic detritus recedes. This succession characterizes the transition to early Holocene warming and regeneration of soils and vegetation. The top of Younger Dryas (M3c/M4) is dated to 10.610 v.y. BP when first distinct layers of planktonic diatoms occur. Therefore the Pleistocene/Holocene boundary is fixed lithologically by varve counting, beginning at the isochrone of LST (11.323+/-224 v.y. BP), to 10.610 v.y. BP.

Keywords

Planktonic Diatom Late Glacial Organic Detritus Organic Deposit Maar Lake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bard, E. & Broecker, W. S. (1992): The last deglaciation. Absolute and radiocarbon chronologies. NATO ASI Series, Vol. 12: p 358; Berlin, Heidelberg.Google Scholar
  2. Becker, B. & Kromer, B. (1986): Extension of the Holocene dendrochronology by the Preboreal pine series, 8.800 to 10.100 BP. Radiocarbon, 28 (2B): 961–967.Google Scholar
  3. Björck, S., Sandgren, P. & Holmquist, B. (1987): A magnetostratigraphic comparison between 14C years and varve years during the Late Weichselian, indicating significant differences between the time scales. J. Quat. Sci., 2: 133–140.CrossRefGoogle Scholar
  4. Drohmann, D., Poth, D., Seul, C., Wegner, F. & Negendank, J.F.W. (1989): Sedimentology of Meerfeld Maar lake sediments (Westeifel, FRG). Terrabstracts, 1: 226; Strasburg.Google Scholar
  5. Eicher, U. (1987): Die spätglazialen sowie frühpostglazialen Klimaverhältnisse im Bereich der Alpen: Sauerstoffisotopenkurven kalkhaltiger Sedimente. Geogr. Helv., 42/2: 99–104.Google Scholar
  6. Eicher, U. & Siegenthaler, U. (1976): Palynological and oxygen isotope investigations on Late Glacial sediment cores from Swiss lakes. Boreas, 5: 109–117; Oslo.CrossRefGoogle Scholar
  7. Hammer, C.U., Clausen, H.B. & Tauber, H. (1986): Ice core dating of the Pleistocene/Holocene boundary applied to a calibration of the 14C time scale. Radiocarbon, 28: 284–291.Google Scholar
  8. Heinz, T. (1991): Paläolimnologische und spektralanalytische Untersuchungen an jahreszeitlich geschichteten Sedimenten des Schalkenmehrener Maares/West. Dipl.-Arb. Univ. Trier, p 107; Trier (unpubl.).Google Scholar
  9. Lotter, A. (1991): Absolute dating of the Late-Glacial period in Switzerland using annually laminated sediments. Quat. Res., 35: 321–330.CrossRefGoogle Scholar
  10. Mangerud, J., Anderson, S.T., Berglund, B.E. & Donner, J.J. (1974): Quaternary stratigraphy of Norden: a proposal for terminology and classification. Boreas, 3: 109–128; Oslo.CrossRefGoogle Scholar
  11. Poth, D. & Negendank, J.F.W. (1991): Sedimentmikrostratigraphische Untersuchungen spätquartärer jahreszeitlich geschichteter Seesedimente des Meerfelder Maares (Westeifel, FRG) —Ein Beitrag zur Rekonstruktion des Paläoklimas an der Grenze Pleistozän/Holozän. In: Zolitschka, B. & Negendank, J.F.W. (eds.): Symposium on Paleolimnology of Maar Lakes. Abstract Volume, 48; Trier.Google Scholar
  12. Saarnisto, M. (1985): Long varve series in Finland. Boreas, 14: 133–137; Oslo.CrossRefGoogle Scholar
  13. Straka, H. (1975): Die spätquartäre Vegetationsgeschichte der Vulkaneifel. Beitr. Landespflege in Rheinl.-Pfalz, Beih. 3: 1–163; Oppenheim.Google Scholar
  14. Stuiver, M., Braziunas, T.F., Becker, B. & Kromer, B. (1991): Climatic, solar, oceanic and geomagnetic influences on Late Glacial and Holocene atmospheric 14C/12C change. Quat. Res., 35: 1–24.CrossRefGoogle Scholar
  15. Zolitschka, B. (1990): Spätquartäre jahreszeitlich geschichtete Seesedimente ausgewählter Eifelmaare. Paläolimnologische Untersuchungen als Beitrag zur spät-und postglazialen Klima-und Besiedlungsgeschichte. Documenta naturae, 60: p 241; München.Google Scholar
  16. Zolitschka, B., Brauer, A., Haverkamp, B., Heinz, T., Negendank, J.F.W. & Poth, D. (1991): Sedimentologischer Nachweis und Datierung einer frühholozänen Maareruption (Ulmener Maar?) in der Vulkaneifel. In: Zolitschka, B. & Negendank J.F.W. (eds.): Symposium on Paleolimnology of Maar Lakes. Abstract Volume, 63; Trier.Google Scholar
  17. Zolitschka, B., Haverkamp, B. & Negendank, J.F.W. (1992): Younger Dryas oscillation—Varve dated microstratigraphic, palynological and palaeomagnetic records from Lake Holzmaar, Germany. In: Bard, E. & Broecker, W.S. (eds.), The last deglaciation. Absolute and radiocarbon chronologies, NATO ASI Series, Vol.12: 81–101; Berlin, Heidelberg.Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • D. Poth
    • 1
  • J. F. W. Negendank
    • 1
  1. 1.Dept. of GeologyUniversity of TrierTrierGermany

Personalised recommendations