Skip to main content

Some numerical results on best uniform polynomial approximation of X α on [0, 1]

  • Conference paper
  • First Online:
Book cover Methods of Approximation Theory in Complex Analysis and Mathematical Physics

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1550))

Abstract

Let α be a positive number, and let E n (x α; [0, 1]) denote the error of best uniform approximation to x α by polynomials of degree at most n on the interval [0, 1]. Russian mathematician S. N. Bernstein established the existence of a nonnegative constant β(α) such that β(α):=limn→∞(2n) E n (x α;[0, 1]) (α>0).

In addition, Bernstein showed that πβ(α)<Γ(2α)|sin(πα)| (α>0), and that Γ(2α)|sin(πα)|(1−1/(2α−1))<πβ(α) (α>1/2), so that the asymptotic behavior of β(α) is thus known when α → ∞.

Still, the problem of trying to determine β(α) more precisely, for all α>0, is intriguing. To this end, we have rigorously determined the numbers lcub;E n (x α;[0, 1])rcub; 40n=1 for thirteen values of α, where these numbers were calculated with a precision of at least 200 significant digits. For each of these thirteen values of α. Richardson’s extrapolation was applied to the products lcub;(2n) E n (x α; [0, 1])rcub; 40n=1 to obtain estimates of β(α) to approximately 40 decimal places. Included are graphs of the points (α,β(α)) for the thirteen values of α that we considered.

Research was done while a National Science Foundation intern in parallel processing in the Mathematics and Computer Science Division, Argonne National Laboratory.

Research supported by the National Science Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 50.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. N. Bernstein, Sur la meilleure approximation de |x| par des polynômes de degrés donnés, Acta Math. 37 (1913), pp. 1–57.

    Article  MATH  Google Scholar 

  2. S. N. Bernstein, Sur la meillcure approximation de |x| p par des polynômes de degrés trés élevés, Bull. Acad. Sci. USSR, Cl. sci. math. nat. 2 (1938), pp. 181–190.

    MATH  Google Scholar 

  3. S. N. Bernstein, Collected Works (Russian), Akad. Nauk SSSR, Moscow, Vol. II, 1954, pp. 262–272.

    Google Scholar 

  4. H.-P. Blatt and E. B. Saff, Behavior of zeros of polynomials of near best approximation, J. Approx. Theory 46 (1986), pp. 323–344.

    Article  MathSciNet  MATH  Google Scholar 

  5. R. P. Brent, A FORTRAN multiple-precision arithmetic package, ACM Trans. Math. Soft. 4 (1978), pp. 57–70.

    Article  Google Scholar 

  6. C. Brezinski, Algorithms d'Accélération de la Convergence, Éditions Technip, Paris, 1978.

    MATH  Google Scholar 

  7. A. J. Carpenter and R. S. Varga, Some numerical results on best uniform rational approximation of x α on [0, 1], to appear.

    Google Scholar 

  8. A. A. Gonchar and E. A. Rakhmanov, Equilibrium distributions and degree of rational approximation of analytic functions, Mat. Sbornik 134, (176) (1987), pp. 306–352. An English translation appears in Math. USSR Sbornik 62, 2 (1989), pp. 305–348.

    MATH  Google Scholar 

  9. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, Corrected and Enlarged Edition Prepared by Alan Jeffrey, Academic Press, San Diego, 1979.

    Google Scholar 

  10. M. A. Jenkins, Algorithm 493, Zeros of a real polynomial, Collected Algorithms from ACM, 1975, 10 pp.

    Google Scholar 

  11. H. L. Loeb, Approximation by generalized rationals, SIAM J. on Numer. Anal. 3 (1966), pp. 34–55.

    Article  MathSciNet  MATH  Google Scholar 

  12. E. L. Lusk and R. A. Overbeek, Use of monitors in FORTRAN: A tutotial on the barrier, self-scheduling do-loop, and askfor monitors, Parallel MIMD Computation: The HEP Supercomputer and Its Applications (J. S. Kowalik, ed.), pp. 367–411, The MIT Press, Cambridge, Mass., 1985.

    Google Scholar 

  13. G. Meinardus, Approximation of Functions: Theory and Numerical Methods, Springer-Verlag, New York, 1967.

    Book  MATH  Google Scholar 

  14. E. Ya. Remez, Sur le calcul effectiv des polynômes d'approximation de Tchebichef, C.R. Acad. Sci. Paris 199 (1934), pp. 337–340.

    Google Scholar 

  15. T. J. Rivlin, An Introduction to the Approximation of Functions, Blaisdell Publishing Co., Waltham, Mass., 1969.

    MATH  Google Scholar 

  16. H. Stahl, Best uniform rational approximation of |x| on [−1, 1], Mat. Sbornik (to appear).

    Google Scholar 

  17. R. S. Varga, Scientific Computation on Mathematical Problems and Conjectures, CBMS-NSF Regional Conference Series in Applied Mathematics 60, SIAM, Philadelphia, Penn., 1990.

    Book  MATH  Google Scholar 

  18. R. S. Varga and A. J. Carpenter, On the Bernstein Conjecture in approximation theory, Constr. Approx. 1 (1985), pp. 333–348. A Russian translation appears in Mat. Sbornik 129, 171 (1986), pp. 535–548.

    Article  MathSciNet  MATH  Google Scholar 

  19. R. S. Varga, A. Ruttan, and A. J. Carpenter, Numerical results on best uniform rational approximation of |x| on [−1, +1], Mat. Sbornik (to appear).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Andrei A. Gonchar Edward B. Saff

Rights and permissions

Reprints and permissions

Copyright information

© 1993 The Euler International Mathematical Institute

About this paper

Cite this paper

Carpenter, A.J., Varga, R.S. (1993). Some numerical results on best uniform polynomial approximation of X α on [0, 1]. In: Gonchar, A.A., Saff, E.B. (eds) Methods of Approximation Theory in Complex Analysis and Mathematical Physics. Lecture Notes in Mathematics, vol 1550. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0117488

Download citation

  • DOI: https://doi.org/10.1007/BFb0117488

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56931-2

  • Online ISBN: 978-3-540-47792-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics