Advertisement

On the convergence of Bieberbach polynomials in domains with interior zero angles

  • I. E. Pritsker
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1550)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Keldysh M., Sur l'approximation en moyenne quadratique des fonctions analytiques, Mat. Sb. 5 no. 2 (1939), pp. 391–401.MathSciNetzbMATHGoogle Scholar
  2. [2]
    Andrievskii V.V., Convergence of Bieberbach polynomials in domains with quasiconformal boundary, Ukrainian Math. J., 35 no. 3 (1983), pp. 273–277. (In Russian)MathSciNetGoogle Scholar
  3. [3]
    Andrievskii V.V., Uniform convergence of Bieberbach polynomials in domains with piecewise-quasiconformal boundary, In: Theory of Mappings and Approximation of Functions, Naukova Dumka, Kiev, 1983, pp. 3–18. (In Russian)Google Scholar
  4. [4]
    Andrievskii V.V., Uniform convergence of Bieberbach polynomials in domains with zero angles, Dokl. Akad. Nauk Ukrain. SSR Ser. A no. 4 (1982), pp. 3–5. (In Russian)Google Scholar
  5. [5]
    Gaier D., On the convergence of the Bieberbach polynomials in regions with corners, Constr. Approx. 4 (1988), pp. 289–305.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    Kulikov I.V., Computational method of approximation by polynomials in Jordan domains satisfying the segment condition Rostov-na-Donu, VINITI 2853 (1988), p. 251. (In Russian)Google Scholar
  7. [7]
    Pritsker I.E., The order relationships between the polynomial norms in complex domains, Ukrainian Math. J., (to appear). (In Russian)Google Scholar

Copyright information

© The Euler International Mathematical Institute 1993

Authors and Affiliations

  • I. E. Pritsker
    • 1
  1. 1.Institute of Applied Mathematics and MechanicsUkrainian Academy of SciencesDonetskUSSR

Personalised recommendations