Spectral theory of nonlinear equations and n-widths of Sobolev spaces

  • A. P. Buslaev
  • V. M. Tikhomirov
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 1550)


Spectral Theory Discrete Case Iterative Sequence Sobolev Class Positive Matrice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Euler, Collected Works, Moscow, 1934. (In Russian)Google Scholar
  2. [2]
    Lagrange J.L., Eurves, Gauthier-Villars, Paris, 1968.Google Scholar
  3. [3]
    Rayleigh J., The Theorie of the Sound, New York, 1945.Google Scholar
  4. [4]
    Courant R. and Hilbert D., Methoden der mathematishen physik, Springer, Berlin, 1934.Google Scholar
  5. [5]
    Dunford N. and Schwartz J, Linear Operators. Part 2. Spectral Theory, Interscience publishers, New York, London, 1963.zbMATHGoogle Scholar
  6. [6]
    Kolmogorov A. N., Uber die beste Annaherung von Functionen einegeben Funktionenklasse, Ann. of Math. 37 (1936), pp. 107–110.MathSciNetCrossRefGoogle Scholar
  7. [7]
    Tikhomirov V.M., Diameters of sets in function spaces and the theory of best approximations, Uspechi Math. Nauk 15 (1960), pp. 81–120. (In Russian)Google Scholar
  8. [8]
    Tikhomirov V.M., Best method of approximation and interpolation of difference functions in the space C[−1, 1], Math. Sbornik 80 (122) (1969), pp. 290–304. (In Russian)zbMATHGoogle Scholar
  9. [9]
    Tikhomirov V.M., Some Problems in Theory of Approximation, MGU, Moscow, 1976. (In Russian)Google Scholar
  10. [10]
    Tikhomirov V.M., A.N. Kolmogorov and Approximation Theory, Uspechi Math. Nauk 44 (1989), pp. 83–122. (In Russian)MathSciNetzbMATHGoogle Scholar
  11. [11]
    Makovoz Yu.I., On a method for estimation from below of dimeters of sets in Banach spaces, Math. Sbornik 87 (1972), pp. 136–142. (In Russian)MathSciNetGoogle Scholar
  12. [12]
    Pinkus A., Some extremal problems for strictly torally positive matrices, Linear Alg. and Appl. 64 (1985), pp. 141–156.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    Pinkus A., Constructive approximation 1 (1985), pp. 15–62.MathSciNetCrossRefGoogle Scholar
  14. [14]
    Buslaev A.P. and Tikhomirov V.M., Some problems of nonlinear analysis, Dokl. Akad. Nauk. SSSR 283 (1985), pp. 13–18. (In Russian)MathSciNetzbMATHGoogle Scholar
  15. [15]
    Buslaev A.P., Extremal problems of approximation theory and nonlinear oscillations, Dokl. Akad. Nauk. SSSR 305 (1989), pp. 379–384. (In Russian)MathSciNetzbMATHGoogle Scholar
  16. [16]
    Buslaev A.P. and Tikhomirov V.M., Spectra of nonlinear differential equations and widths of Sobolev spaces, Math. Sbornik 181 (1990), pp. 1587–1606. (In Russian)zbMATHGoogle Scholar
  17. [17]
    Buslaev A.P., On variational description of the spectrum of totally positive matrices and extremal problems of the approximation theory, Mat.Zametki 49 (1990), pp. 39–46. (In Russian)MathSciNetGoogle Scholar
  18. [18]
    Buslaev A.P., On asymptotics of widths and spectra of nonlinear differential equations, Algebra i Analiz 3 (1991). (In Russian)Google Scholar
  19. [19]
    Buslaev A.P., On Bernstein-Nikolsky inequality and widths of Sobolev classes, Dokl. Akad. Nauk. (1992) (to appear). (In Russian)Google Scholar

Copyright information

© The Euler International Mathematical Institute 1993

Authors and Affiliations

  • A. P. Buslaev
    • 1
  • V. M. Tikhomirov
    • 1
  1. 1.Steklov Math Inst.Ac.Sc.Moscow

Personalised recommendations