Constitutively active and G-protein coupled inward rectifier K+ channels: Kir2.0 and Kir3.0

  • Peter R. Stanfield
  • Shigehiro Nakajima
  • Yasuko Nakajima
Part of the Reviews of Physiology, Biochemistry and Pharmacology book series (REVIEWS, volume 145)


Potassium Channel Xenopus Oocyte Selectivity Filter Atrial Myocytes Rectifier Potassium Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrams CJ, Davies NW, Shelton PA, Stanfield PR (1996). The role of a single aspartate residue in ionic selectivity and block of a murine inward rectifier K+ channel Kir2.1. Journal of Physiology 493: 643–649PubMedGoogle Scholar
  2. Adams PR, Brown DA, Constanti A (1982). Pharmacological inhibition of the M-current. Journal of Physiology 332: 223–262PubMedGoogle Scholar
  3. Adrian RH (1964) The rubidium and potassium permeability of frog muscle membrane. J. Physiol. 175: 134–159.PubMedGoogle Scholar
  4. Adrian RH (1969). Rectification in muscle membrane. Progress in Biophysics 19: 341–369.CrossRefGoogle Scholar
  5. Adrian RH, Chandler WK, Hodgkin AL (1970) Slow changes in potassium permeability in skeletal muscle. Journal of Physiology 208: 645–668.PubMedGoogle Scholar
  6. Adrian RH, Freygang W (1962a). The potassium and chloride conductance of frog muscle membrane. Journal of Physiology 163: 61–103.PubMedGoogle Scholar
  7. Adrian RH, Freygang W (1962b). Potassium conductance of frog muscle under controlled voltage. Journal of Physiology 163: 104–114.PubMedGoogle Scholar
  8. Adrian RH, Peachey LD (1973). Reconstruction of the action potential of frog sartorius muscle. Journal of Physiology 235: 103–131.PubMedGoogle Scholar
  9. Adrian RH, Slayman CL (1966). Membrane potential and conductance during transport of sodium, potassium and rubidium in frog muscle. Journal of Physiology 184: 970–1014PubMedGoogle Scholar
  10. Aghajanian GK, Wang YY (1986). Pertussis toxin blocks the outward currents evoked by opiate and α2-agonists in locus coeruleus neurons. Brain Research 371: 390–394PubMedCrossRefGoogle Scholar
  11. Aguilar-Bryan L, Nichols CG, Wechsler SW, Clement IV JP, Boyd III AE, Gonzalez G, Herrera-Sosa H, Nguy K, Bryan J, Nelson DA (1995). Cloning of the beta cell highaffinity sulfonylurea receptor: a regulator of insulin secretion. Science 268: 423–426.PubMedCrossRefGoogle Scholar
  12. Alagem N, Dvir M, Reuveny E (2001). Mechanism of Ba2+ block of a mouse inwardly rectifying K+ channel: differential contribution by two discrete residues. Journal of Physiology 534: 381–393.PubMedCrossRefGoogle Scholar
  13. Albsoul-Younes AM, Sternweis PM, Zhao P, Nakata H, Nakajima S, Nakajima Y, and Kozasa T (2001) Interaction sites of the G protein β subunit with brain G proteincoupled inward rectifier K+ channel. Journal of Biological Chemistry, 276: 12712–12717.PubMedCrossRefGoogle Scholar
  14. Aleksandrov A, Velimirovic B, Clapham DE (1996). Inward rectification of the IRK1 K+ channel reconstructed in lipid bilayers. Biophysical Journal 70: 2680–2687.PubMedGoogle Scholar
  15. Almers W, Stanfield PR, Stühmer W (1983). Lateral distribution of sodium and potassium channels in frog skeletal muscle: measurements with a patch-clamp technique. Journal of Physiology 336: 261–284PubMedGoogle Scholar
  16. Andrade R, Malenka RC, Nicoll RA (1986). A G protein couples serotonin and GABAB receptors to the same channels in hippocampus. Science 234: 1261–1265PubMedCrossRefGoogle Scholar
  17. Araneda RC, Lan J-Y, Zheng X, Zukin RS, Bennett MVL (1999). Spermine and arcaine block and permeate N-methyl-D-aspartate receptor channels. Biophysical Journal 76: 2899–2911.PubMedGoogle Scholar
  18. Arcangeli A, Bianchi L, Becchetti A, Faravelli L, Coronnello M, Mini E, Olivotto M, Wanke E (1995). A novel inward-rectifying K+ current with a cell-cycle dependence governs the resting potential of mammalian neuroblastoma cells. Journal of Physiology 489: 455–471.PubMedGoogle Scholar
  19. Arcangeli A, Rosati B, Cherubini A, Crociani O, Fontana L Ziller C, Wanke E, Olivotto M (1997) HERG-and IRK-like inward rectifier currents are sequentially expressed during neuronal development of neural crest cells and their derivatives. European Journal of Neuroscience 9: 2596–2604.PubMedCrossRefGoogle Scholar
  20. Armstrong CM (1966). Time course of TEA+ induced anomalous rectification in squid giant axons. Journal of General Physiology 50: 491–503.PubMedCrossRefGoogle Scholar
  21. Armstrong CM (1969). Inactivation of potassium conductance and related phenomena caused by quaternary ammonium ion injected into squid axons. Journal of General Physiology 54: 553–575.PubMedCrossRefGoogle Scholar
  22. Armstrong CM (1971). Interaction of tetraethylammonium derivatives with the potassium channels of giant axons. Journal of General Physiology 58: 413–437.PubMedCrossRefGoogle Scholar
  23. Ashcroft FM, Stanfield PR (1983). The influence of the permeant ions thallous and potassium on inward rectification in frog skeletal muscle. Journal of Physiology 343: 407–428.PubMedGoogle Scholar
  24. Axelrod D (1983). Lateral motion of membrane proteins and biological function. Journal of Membrane Biology 75: 1–10PubMedCrossRefGoogle Scholar
  25. Baines RA, Uhler JP, Thompson A, Sweeney ST, Bate M (2001). Altered electrical properties in Drosophila neurons developing without synaptic transmission. Journal of Neuroscience 21: 1523–1531.PubMedGoogle Scholar
  26. Bannister JPA, Young BA, Sivaprasadarao, A, Wray D (1999). Conserved extracellular cysteine residues in the inwardly rectifying potassium channel Kir2.3 are required for function but not expression in the membrane. FEBS Letters 458: 393–399PubMedCrossRefGoogle Scholar
  27. Barres BA, Chun LLY, Corey DP (1990). Ion channels in vertebrate glia. Annual Reviews of Neuroscience 13: 441–474CrossRefGoogle Scholar
  28. Bastian J, Nakajima S (1974) Action potential in the transverse tubules and its role in the activation of skeletal muscle. Journal of General Physiology 63: 257–278.PubMedCrossRefGoogle Scholar
  29. Baukrowitz T, Schulte U, Oliver D, Herlitze S, Krauter T, Tucker SJ, Ruppersberg JP, Fakler B (1998). PIP2 and PIP as determinants for ATP inhibition of K (ATP) channels. Science 282: 1141–1144.PubMedCrossRefGoogle Scholar
  30. Baylor DA, Nicholls JG (1969) After-effects of nerve impulses on signalling in the central nervous system of the leech. Journal of Physiology 203: 571–589PubMedGoogle Scholar
  31. Beirão PSL, Davies NW, Stanfield PR (1994). Inactivating ‘ball’ peptide from Shaker B blocks Ca2+-activated but not ATP-dependent K+ channels of rat skeletal muscle. Journal of Physiology 474: 269–274.PubMedGoogle Scholar
  32. Benson JA, Levitan IB (1983). Serotonin increases an anomalously rectifying K+ current in the Aplysia neuron R15. Proceedings of the National Academy of Sciences USA 80: 3522–3525CrossRefGoogle Scholar
  33. Berman DM, Wilkie TM, Gilman AG (1996). GAIP and RGS4 are GTPase-activating proteins for the Gi subfamily of G protein a subunits. Cell 86: 445–452PubMedCrossRefGoogle Scholar
  34. Bernheim L, Liu J-H, Hamann M, Haenggeli CA, Fischer-Lougheed J, Bader CR (1996). Contribution of a non-inactivating potassium current to the resting potential of fusion-competent human myoblasts. Journal of Physiology 493:129–141.PubMedGoogle Scholar
  35. Bezanilla F, Armstrong CM (1972). Negative conductance caused by entry of sodium and cesium ions into potassium channels of squid axons. Journal of General Physiology 60:588–608.PubMedCrossRefGoogle Scholar
  36. Bianchi L, Roy M-L, Taglialatela M, Lundgren DW, Brwon AM, Ficker E (1996) Regulation by spermine of native inward rectifier K+ channels in RBL-1 cells. Journal of Biological Chemistry 271:6114–6121.PubMedCrossRefGoogle Scholar
  37. Bijlenga Occhiodoro Liu Bader Bernheim Fischer-Lougheed J (2000). T-type alpha 1H Ca2+ channels are involved in Ca2+ signaling during terminal differentiation (fusion) of human myoblasts. Proceedings of the National Academy of Sciences USA 97:7627–7632.CrossRefGoogle Scholar
  38. Bijlenga PT, Liu J-H, Hamann M, Haenggeli CA, Fischer-Lougheed J, Bader CR (1998). An ether-a-go-go K+ current Ih-eag contributes to the hyperpolarization of fusion-competent human myoblasts. Journal of Physiology 512:317–323.PubMedCrossRefGoogle Scholar
  39. Boim MA, Ho K, Shuck ME, Bienkowski MJ, Block JH, Slightom JL, Yang Y, Brenner BM, Hebert SC (1995). ROMK inwardly rectifying ATP-sensitive K+ channel. II. Cloning and distribution of alternative forms. American Journal of Physiology 268: F1132–F1140.PubMedGoogle Scholar
  40. Bond CT, Ammala C, Ashfield R, Blair TA, Gribble F, Khan RN, Lee K, Proks P, Rowe ICM, Sakura H, Ashford MJ, Adelman JP, Ashcroft FM (1995). Cloning and expression of the cDNA encoding an inwardly-rectifying potassium channel expressed in pancreatic beta cells and in the brain. FEBS Letters 367:61–66.PubMedCrossRefGoogle Scholar
  41. Bond CT, Pessia M, Xia X-M, Lagrutta AM, Kavanaugh MP, Adelman JP (1994). Cloning and expression of a family of inward rectifier potassium channels. Receptors and Channels 2:183–191.PubMedGoogle Scholar
  42. Bowie D, Mayer ML (1995). Inward rectification of both AMPA and kainate subtype glutamate receptors generated by polyamine-mediated ion channel block. Neuron 15:453–462.PubMedCrossRefGoogle Scholar
  43. Bradley KK, Jaggar JH, Bonev AD, Heppner TJ, Flynn ERM, Nelson MT & Horowitz B (1999). Kir2.1 encodes the inward rectifier potassium channel in rat arterial smooth muscle cells. Journal of Physiology 515:639–651.PubMedCrossRefGoogle Scholar
  44. Brahmajothi MV, Morales MJ, Liu S, Rasmusson RL, Campbell DL, Strauss HC (1996). In situ hybridization reveals extensive diversity of K+ channel mRNA in isolated ferret cardiac myocytes. Circulation Research 78:1083–1089.PubMedGoogle Scholar
  45. Braun AP, Fedida D and Giles WR (1992) Activation of α1-adrenoceptors modulates the inwardly rectifying potassium currents of mammalian atrial myocytes. Pflügers Arch, 421:431–439.PubMedCrossRefGoogle Scholar
  46. Brazier SP, Ramesh B, Haris PI, Lee DC, Srai SKS (1998). Secondary structure analysis of the putative membrane associated domains of the inward rectifier K+ channel ROMK1. Biochemical Journal 335:375–380.PubMedGoogle Scholar
  47. Breitwieser GE, Szabo G (1985) Uncoupling of cardiac muscarinic and β-adrenergic receptors from ion channels by a guanine nucleotide analogue. Nature 317:538–540PubMedCrossRefGoogle Scholar
  48. Breitwieser GE, Szabo G (1988) Mechanism of muscarinic receptor-induced K+ channel activation as revealed by hydrolysis-resistant GTP analogues. Journal of General Physiology 91:469–493.PubMedCrossRefGoogle Scholar
  49. Brew H, Gray PTA, Mobbs P, Attwel D (1986). Endfeet of retinal glial cells have higher densities of ion channels that mediate K+ buffering. Nature 324:466–468.PubMedCrossRefGoogle Scholar
  50. Brown DA (1990) G-proteins and potassium currents in neurons. Annual Review of Physiology 52:215–242PubMedCrossRefGoogle Scholar
  51. Bünemann M, Hosey MM (1998) Regulators of G Protein signaling (RGS) proteins constitutively activate Gβγ-gated potassium channels. Journal of Biological Chemistry 273:31186–31190PubMedCrossRefGoogle Scholar
  52. Burgen ASV, Terroux KG (1953) On the negative inotropic effect in the cat's auricle. Journal of Physiology 120:449–464PubMedGoogle Scholar
  53. Cabrera, J.L., De Freitas, F., Satpaev, D.K., and Slepak, V.Z. (1998) Identification of the Gβ5-RGS7 protein complex in the retina. Biochemical and Biophysical Research Communications 249:898–902.PubMedCrossRefGoogle Scholar
  54. Carlson KE, Woolkalis MJ, Newhouse MG, Manning DR (1986) Fractionation of the b subunit common to guanine nucleotide-binding regulatory proteins with the cytoskeleton. Molecular Pharmacology 30:463–468PubMedGoogle Scholar
  55. Carmeliet E (1979). Voltage dependent block of inward going rectification in cardiac Purkinje fibers by external Cs+ ions. Archives Internationales de Pharmacodynamie et de Thérapie 242:296–297.PubMedGoogle Scholar
  56. Casey PJ (1994) Lipid modifications of G proteins. Current Opinion in Cell Biology 6:219–225PubMedCrossRefGoogle Scholar
  57. Chan KW, Sui JL, Vivaudou M, Logothetis DE (1996) Control of channel activity through a unique amino acid residue of a G protein-gated inwardly rectifying K+ channel subunit. Proceedings of the National Academy USA 93:14193–14198CrossRefGoogle Scholar
  58. Chan KW, Sui JL, Vivaudou M, Logothetis DE (1997) Specific regions of heteromeric subunits involved in enhancement of G protein-gated K+ channel activity. Journal of Biological chemistry 272:6548–6555PubMedCrossRefGoogle Scholar
  59. Chandy KG, Gutman GA (1993) Nomenclature for mammalian potassium channel genes. Trends in Pharmacological Sciences 14:434.PubMedCrossRefGoogle Scholar
  60. Chilton L, Loutzenhiser R (2001). Functional evidence for an inward rectifier potassium current in rat renal afferent arterioles. Circulation Research 88:152–158.PubMedGoogle Scholar
  61. Cho H, Nam G-B, Lee, SH, Earm YE, Ho W-K (2001) Phosphatidylinositol 4,5-bisphosphate is acting as a signal molecule in α1-adrenergic pathway via the modulation of acetylcholine-activated K+ channels in mouse atrial myocytes. Journal of Biological chemistry 276:159–164.PubMedCrossRefGoogle Scholar
  62. More Cho HC, Tsushima et al. to here from p 157Google Scholar
  63. Choe H, Palmer LG, Sackin H (1999). Structural determinants of gating in inwardly-rectifying K+ channels. Biophysical Journal 76:1988–2003.PubMedGoogle Scholar
  64. Choe H, Sackin H, Palmers LG (1998). Permeation and gating of an inwardly rectifying potassium channel: evidence for a variable energy well. Journal of General Physiology 112:433–446.PubMedCrossRefGoogle Scholar
  65. Choi KL, Aldrich RW, Yellen G (1991). Tetraethylammonium blockade distinguishes two inactivation mechanisms in voltage-activated K+ channels. Proceedings of the National Academy of Sciences USA 88:5092–5095.CrossRefGoogle Scholar
  66. Chrissobolis S, Ziogas J, Chu Y, Faraci FM, Sobey CG (2000). Role of inwardly rectifying K+ channels in K+-induced cerebral vasodilation in vivo. American Journal of Physiology 279:H2704–2712.PubMedGoogle Scholar
  67. Chuang HH, Jan YN, Jan LY (1997). Regulation of IRK3 inward rectifier K+ channel by m1 acetylcholine receptor and intracellular magnesium. Cell 89:1121–1132.PubMedCrossRefGoogle Scholar
  68. Chuang HH, Prescott ED, Kong H, Shields S, Jordt S-E, Basbaum AI, Chao MV, Julius D (2001). Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature 411:957–962.PubMedCrossRefGoogle Scholar
  69. Chuang HH, Yu M, Jan YN, Jan LY (1998) Evidence that the nucleotide exchange and hydrolysis cycle of G-proteins causes acute desensitization of G-protein gated inward rectifier K+ channels. Proceedings of the National Academy USA 95:11727–11732CrossRefGoogle Scholar
  70. Ciani S, Krasne S, Hagiwara S (1980). A model for the effects of potential and external K+ concentration on the Cs+ blocking of inward rectification. Biophysical Journal 30:199–204.PubMedGoogle Scholar
  71. Ciani S, Krasne S, Miyazaki S, Hagiwara S (1978). A model for anomalous rectification: electrochemical-potential-dependent gating of membrane channels. Journal of Membrane Biology 44:103–134.PubMedCrossRefGoogle Scholar
  72. Clapham DE (1994) Direct G protein activation of ion channels? Annual Reviews of Neuroscience 17:441–464CrossRefGoogle Scholar
  73. Clapham DE, Neer EJ (1997) G protein βγ subunits. Annu Rev Pharmacol Toxicol 37:167–203PubMedCrossRefGoogle Scholar
  74. Clarson LH, Greenwood SL, Mylona P, Sibley CP (2001). Inwardly rectifying K+ current and differentiation of human placental cytotrophoblast cells in culture. Placenta 22: 328–336.PubMedCrossRefGoogle Scholar
  75. Cleemann L, Morad M (1979). Potassium currents in frog ventricular muscle: evidence from voltage clamp currents and extracellular K accumulation. Journal of Physiology 286: 114–143.Google Scholar
  76. Clement IV JP, Kunjilwar K, Gonzalez G, Schwanstecher M, Panten U, Aguilar-Bryan L, Bryan J (1997). Association and stoichiometry of K(ATP) channel subunits. Neuron 18: 827–838.PubMedCrossRefGoogle Scholar
  77. Codina J, Yatani A, Grenet D, Brown AM, Birnbaumer L (1987). The α subunit of the GTP binding protein GK opens atrial potassium channels. Science 236: 442–445PubMedCrossRefGoogle Scholar
  78. Cohen NA, Brenman JE, Snyder SH, Bredt DS (1996a). Binding of the inward rectifier K+ channel Kir2.3 to PSD-95 is regulated by protein kinase A phosphorylation. Neuron 17: 759–767.PubMedCrossRefGoogle Scholar
  79. Cohen NA, Sha Q, Makhina EN, Lopatin AN, Linder ME, Snyder SH, Nichols CG (1996b). Inhibition of an inward rectifier potassium channel (Kir2.3) by G-protein betagamma subunits. Journal of Biological Chemistry 271: 32301–32305.PubMedCrossRefGoogle Scholar
  80. Cole KS, Curtis HJ (1941). Membrane potential of the squid giant axon during current flow. Journal of General Physiology 24: 551–563CrossRefPubMedGoogle Scholar
  81. Collins A, Chuang H, Jan YN, Jan LY (1997). Scanning mutagenesis of the putative transmembrane segments of Kir2.1, an inward rectifier potassium channel. Proceedings of the National Academy of Sciences USA 94: 5456–5460.CrossRefGoogle Scholar
  82. Collins A, German MS, Jan YN, Jan LY, Zhao B (1996). A strongly inwardly rectifying K+ channel that is sensitive to ATP Journal of Neuroscience 16: 1–9.PubMedGoogle Scholar
  83. Colquhoun D, Sakmann B (1981) Fluctuations in the microsecond time range of the current through single acetylcholine receptor ion channels. Nature 294: 464–466PubMedCrossRefGoogle Scholar
  84. Colquhoun D, Sakmann B (1985). Fast events in single-channel currents activated by acetylcholine and its analogues at the frog muscle end-plate. Journal of Physiology 369:501–557PubMedGoogle Scholar
  85. Constanti A, Galvan M (1983). Fast inward-rectifying current accounts for anomalous rectification in olfactory cortex neurones. Journal of Physiology 335:153–178PubMedGoogle Scholar
  86. Costantin LL (1970) The role of sodium current in the radial spread of contraction in frog muscle fibers. Journal of General Physiology 55: 703–715.PubMedCrossRefGoogle Scholar
  87. Corey S, Krapivinsky G, Krapivinsky L, Clapham DE (1998). Number and stoichiometry of subunits in the native atrial G-protein-gated K+ channel, IKACh. Journal of Biological Chemistry 273:5271–5278PubMedCrossRefGoogle Scholar
  88. Coulter KL, Perier F, Radeke CM, Vandenberg CA (1995). Identification and molecular localization of a pH-sensing domain for the inward rectifier potassium channel HIR. Neuron 15: 1157–1168.PubMedCrossRefGoogle Scholar
  89. Crank J (1967). The mathematics of diffusion. Oxford University Press, LondonGoogle Scholar
  90. Crawford AC, Fettiplace R (1980) The frequency selectivity of auditory nerve fibres and hair cells in the cochlea of the turtle. Journal of Physiology 306:377–412Google Scholar
  91. Dart C, Leyland ML (2001). Targeting of an A-kinase anchoring protein, AKAP79, to an inwardly rectifying potassium channel, Kir2.1. Journal of Biological Chemistry 276: 20499–20505.PubMedCrossRefGoogle Scholar
  92. Dart C, Leyland ML, Barrett-Jolley R, Shelton PA, Spencer PJ, Conley EC, Sutcliffe MJ, Stanfield PR (1998a). The dependence of Ag+ block of a potassium channel, murine Kir2.1, on a cysteine residue in the selectivity filter. Journal of Physiology 511:15–24.PubMedCrossRefGoogle Scholar
  93. Dart C, Leyland ML, Spencer PJ, Stanfield PR, Sutcliffe MJ (1998b). The selectivity filter of a potassium channel, murine Kir2.1, investigated using scanning cysteine mutagenesis. Journal of Physiology 511: 25–32.PubMedCrossRefGoogle Scholar
  94. Dascal N (1997) Signalling via the G protein-activated K+ channels. Cell Signaling 9: 551–573.CrossRefGoogle Scholar
  95. Dascal N, Doupnik CA, Ivanina T, Bausch S, Wang W, Lin C, Garvey J, Chavkin C, Lester HA, Davidson N (1995). Inhibition of function in Xenopus oocytes of the inwardly rectifying G-protein-activated atrial K channel (GIRK1) by overexpression of a membrane-attached form of the C-terminal tail. Proceedings of the National Academy USA 92:6758–6762CrossRefGoogle Scholar
  96. Dascal N, Schreibmmayer W, Lim NF, Wang W, Chavkin C, DiMagno L, Labarca C, Kieffer BL, Gaveriaux-Ruff C, Trollinger D, Lester HA, Davidson N (1993). Atrial G protein-activated K+ channel: expression cloning and molecular properties. Proceedings of the National Academy USA 90: 10235–10239.CrossRefGoogle Scholar
  97. Davies NW, Shelton PA, Conley EC, Stanfield PR (1996). Subconductance states of the inward rectifier Kir2.1 expressed in murine erythroleukaemia (MEL) cells. Journal of Physiology 495: 89P.Google Scholar
  98. Dell'Acqua ML, Scott JD (1997). Protein kinase A anchoring. Journal of Biological Chemistry 272: 12881–12884.PubMedCrossRefGoogle Scholar
  99. Demo SD, Yellen G (1991). The inactivation gate of the Shaker K+ channel behaves like an open channel blocker. Neuron 7: 743–753.PubMedCrossRefGoogle Scholar
  100. DePaoli AM, Bell GI, Stoffel M (1994) G protein-activated inwardly rectifying potassium channel (GIRK1/KGA) mRNA in adult rat heart and brain by in situ hybridization histochemistry. Molecular and Cellular Neurosciences 5:515–522PubMedCrossRefGoogle Scholar
  101. Derst C, Hirsch JR, Preisig-Müller R, Wischmeyer E, Karschin A, Döring F, Thomzig A, Veh RW, Schlatter E, Kummer W, Daut J (2001a). Cellular localization of the potassium channel Kir7.1 in guinea pig and human kidney. Kidney International 59: 2197–2205.PubMedGoogle Scholar
  102. Derst C, Karschin C, Wischmeyer E, Hirsch JR, Preisig-Muller R, Engel H, Grzeschik K, Daut J, Karschin A (2001b). Genetic and functional linkage of Kir5.1 and Kir2.1 channel subunits. FEBS Letters 491: 205–311.CrossRefGoogle Scholar
  103. Dissmann E, Wischmeyer E, Spauschus A, Pfeil DV, Karschin C, Karschin A (1996) Functional expression and cellular mRNA localization of a G protein-activated K+ inward rectifier isolated from rat brain. Biochemical and Biophysical Research Communications 223: 474–479.PubMedCrossRefGoogle Scholar
  104. Doi T, Fakler B, Schultz JH, Schulte U, Brandle U, Weidemann S, Zenner HP, Lang F, Ruppersberg JP (1996). Extracellular K+ and intracellular pH allosterically regulate renal Kir1.1 channels. Journal of Biological Chemistry 271: 17261–17266.PubMedCrossRefGoogle Scholar
  105. Dong K, Xu J, Vanoye CG, Welch R, MacGregor GG, Giebische G, Hebert SC (2001). An amino acid triplet in the NH2-terminus of rat ROMK1 determines interaction with SUR2B. Journal of Biological Chemistry 276: 44347–44353.PubMedCrossRefGoogle Scholar
  106. Döring F, Derst C, Wischmeyer E, Karschin C, Schneggenburger R, Daut J, Karschin A. (1998). The epithelial inward rectifier channel Kir7.1 displays unusual K+ permeation properties. Journal of Neuroscience 18: 8625–8636.PubMedGoogle Scholar
  107. Doupnik CA, Davidson N, Lester HA (1995a). The inward rectifier potassium channel family. Current Opinion in Neurobiology 5: 268–277.PubMedCrossRefGoogle Scholar
  108. Doupnik CA, Davidson N, Lester HA, Kofuji P (1997) RGS proteins reconstitute the rapid gating kinetics of Gβγ-activated inwardly rectifying K+ channels. Proceedings of the National Academy USA 94:10461–10466CrossRefGoogle Scholar
  109. Doupnik CA, Dessauer CW, Slepak VZ, Gilman AG, Davidson N, Lester HA (1996) Time resolved kinetics of direct Gβ1γ2 interactions with the carboxyl terminus of Kir3.4 inward rectifier K+ channel subunits. Neuropharmacology 35:923–931PubMedCrossRefGoogle Scholar
  110. Doupnik CA, Lim NF, Kofuji P, Davidson N, Lester HA (1995b) Intrinsic gating properties of a cloned G protein-activated inward rectifier K+ channel. Journal of General Physiology 106: 1–23PubMedCrossRefGoogle Scholar
  111. Doyle DA, Cabral JM, Pfuetzner RA, Kuo A, Gublis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of a potassium channel: molecular basis of K+ conduction and selectivity. Science 280: 69–77PubMedCrossRefGoogle Scholar
  112. Drain P, Li L, Wang J (1998) KATP channel inhibition by ATP requires distinct functional domains of the cytoplasmic C terminus of the pore forming subunit. Proceedings of the National Academy of Sciences USA 95: 13953–13985.CrossRefGoogle Scholar
  113. Duprat F, Guillemare E, Romey G, Fink M, Lesage F, Lazdunski M, Honoré E (1995a) Susceptibility of cloned K+ channels to reactive oxygen species. Proceedings of the National Academy USA 92: 11796–11800.CrossRefGoogle Scholar
  114. Duprat F, Lesage F, Guillemare E, Fink M, Hugnot JP, Bigay J, Lazdunski M, Romey G, Barhanin J (1995b) Heterologous mutimeric assembly is essential for K+ channel activity of neuronal and cardiac G-protein-activated inward rectifiers. Biochemical and Biophysical Research Communications 212: 657–663.PubMedCrossRefGoogle Scholar
  115. Edwards FR, Hirst GDS (1988a) Inward rectification in submucosal arterioles of guinea-pig ileum. Journal of Physiology 404: 437–454.PubMedGoogle Scholar
  116. Edwards FR, Hirst GDS, Silverberg GD (1988b). Inward rectification in rat cerebral arterioles; Involvement of potassium ions in autoregulation. Journal of Physiology 404: 455–466.PubMedGoogle Scholar
  117. Edwards G, Dora KA, Gardener MJ, Garland CJ, Weston AH (1998) K+ is an endothelium-derived hyperpolarizing factor in rat arteries. Nature 396: 269–272PubMedCrossRefGoogle Scholar
  118. Einhorn LC, Gregerson KA, Oxford GS (1991) D2 dopamine receptor activation of potassium channels in identified rat lactotrophs: whole-cell and single-channel recording. Journal of Neurosciences 11: 3727–3737Google Scholar
  119. Einhorn LC, Oxford GS (1993) Guanine nucleotide binding proteins mediate D2 dopamine receptor activation of a potassium channel in rat lactotrophs. Journal of Physiology 462: 563–578PubMedGoogle Scholar
  120. Endoh M, Maruyama M, Iijima T (1985) Attenuation of muscarinic cholinergic inhibition by islet-activating protein in the heart. American Journal of Physiology 249: H309–H320PubMedGoogle Scholar
  121. Escobar L, Root MJ, MacKinnon R (1993) Influence of protein surface charge on the bimolecular kinetics of a potassium channel peptide inhibitor. Biochemistry 32: 6982–6987PubMedCrossRefGoogle Scholar
  122. Fakler B, Bond C, Adelman JP, Ruppersberg JP (1996a) Heterololigomeric assembly of inward-rectifier K+ channels from subunits of different families K(ir) 2.1 (IRK1) and K(ir)4.1 (BIR10). Pflügers Archiv 433: 77–83PubMedCrossRefGoogle Scholar
  123. Fakler B, Brändle U, Bond C, Glowatzki S, König C, Adelman JP, Zenner H-P, Ruppersberg JP (1994a). A structural determinant of differential sensitivity of cloned inward rectifier K+ channels to intracellular spermine. FEBS Letters 356: 199–203PubMedCrossRefGoogle Scholar
  124. Fakler B, Brändle U, Glowatzki S, Weidemann S, Zenner H-P, Ruppersberg JP (1995). Strong voltage-dependent inward rectification of inward rectifier K+ channels is caused by intracellular spermine. Cell 80: 149–154PubMedCrossRefGoogle Scholar
  125. Fakler B, Brändle U, Glowatzki E, Zenner HP, Ruppersberg JP (1994b) Kir2.1 inward rectifier K+ channels are regulated independently by protein kinases and ATP hydrolysis. Neuron 13: 1413–1420PubMedCrossRefGoogle Scholar
  126. Fakler B, Schultz JH, Yang J, Schulte U, Brandle U, Zenner HP, Jan LY, Ruppersberg JP (1996b) Identification of a titratable lysine residue that determines sensitivity of kidney potassium channels (ROMK) to intracellular pH. EMBO Journal 15: 4093–4099PubMedGoogle Scholar
  127. Fan Z, Makielski JC (1997) Anionic phospholipids activate ATP-sensitive potassium channels. Journal of Biological Chemistry 272: 5388–5395PubMedCrossRefGoogle Scholar
  128. Farkas RH, Chien PY, Nakajima S, Nakajima Y (1996) Properties of a slow nonselective cation conductance modulated by neurotensin and other neurotransmitters in midbrain dopaminergic neurons. Journal of Neurophysiology 76: 1968–1981PubMedGoogle Scholar
  129. Farkas RH, Chien PY, Nakajima S, Nakajima Y (1997) Neurotensin and dopamine D2 activation oppositely regulate the same K+ conductance in rat midbrain dopaminergic neurons. Neurosciences Letters 231: 21–24CrossRefGoogle Scholar
  130. Farkas RH, Nakajima S, Nakajima Y (1994) Neurotensin excites basal forebrain cholinergic neurons: ionic and signal-transduction mechanisms. Proceedings of the National Academy USA 91: 2853–2857CrossRefGoogle Scholar
  131. Ferrer J, Nichols CG, Makhina EN, Salkoff L, Bernstein J, Gerhard D, Wasson J, Ramanadham S, Permutt A (1995) Pancreatic islet cells express a family of inwardly rectifying K+ channel subunits which interact to form G-protein-activated channels. Journal of Biological Chemistry 270: 26086–26091PubMedCrossRefGoogle Scholar
  132. Ficker E, Taglialatela M, Wible BA, Henley CM, Brown AM (1994) Spermine and spermidine as gating molecules for inward rectifier K+ channels. Science 266: 1068–1072PubMedCrossRefGoogle Scholar
  133. Fink M, Duprat F, Heurteaux C, Lesage F, Romey G, Barhanin J, Lazdunski M (1996) Dominant negative chimeras provide evidence for homo and heteromultimeric assembly of inward rectifier K+ channel proteins via their N-terminal end. FEBS Letters 378: 64–68PubMedCrossRefGoogle Scholar
  134. Fischer-Lougheed J, Liu J-H, Espinos E, Mordasini D, Bader CR, Belin D, Bernheim L (2001) Human myoblast fusion requires expression of functional inward rectifier Kir2.1 channels. Journal of Cell Biology 153: 677–685PubMedCrossRefGoogle Scholar
  135. Fletcher JE, Lindorfer MA, DeFilippo JM, Yasuda H, Guilmard M, Garrison JC (1998) The G protein β5 subunit interacts selectively with the Gqα subunit. Journal of Biological Chemistry 273: 636–644PubMedCrossRefGoogle Scholar
  136. Ford CE, Skiba NP, Bae H, Daaka Y, Reuveny E, Shekter LR, Rosal R, Weng G, Yang CS, Iyengar R, Miller RJ, Jan LY, Lefkowitz RJ, Hamm HE (1998) Molecular basis for interactions of G Protein βγ subunits with effectors. Science 280: 1271–1274PubMedCrossRefGoogle Scholar
  137. Forsyth SE, Hoger A, Hoger JH (1997) Molecular cloning and expression of a bovine endothelial inward rectifier potassium channel. FEBS Letters 409: 277–282PubMedCrossRefGoogle Scholar
  138. Freissmuth M, Casey PF, Gilman AG (1989) G proteins control diverse pathways of transmembrane signaling. FASEB Journal 3: 2125–2132PubMedGoogle Scholar
  139. French RJ, Shoukimas JJ (1981) Blockage of squid axon potassium conductance by internal tetra-n-alkylammonium ions of various sizes. Biophysical Journal 34: 271–291PubMedGoogle Scholar
  140. Fukushima Y (1982) Blocking kinetics of the anomalous potassium rectifier of tunicate egg studied by single channel recording. Journal of Physiology 331: 311–331PubMedGoogle Scholar
  141. Gay LA, Stanfield PR (1977) Cs+ causes a voltage-dependent block of inward K currents in resting skeletal muscle fibres. Nature 267: 169–170PubMedCrossRefGoogle Scholar
  142. Gerber U, Stevens DR, McCarley RW, Greene RW (1991) Muscarinic agonists activate an inwardly rectifying potassium conductance in medial pontine reticular formation neurons of the rat in vitro. Journal of Neurosciences 11: 3861–3867Google Scholar
  143. Giebisch G (1998) Renal potassium transport: mechanism and regulation. American Journal of Physiology 274: F817–833PubMedGoogle Scholar
  144. Glowatzki E, Fakler G, Brandle U, Rexhausen U, Zenner H-P, Ruppersberg JP, Fakler B (1995) Subunit-dependent assembly of inward-rectifier K+ channels. Proceedings of the Royal Society, B. 261: 251–261CrossRefGoogle Scholar
  145. Goodman MB, Art JJ (1996) Positive feedback by a potassium-selective inward rectifier enhances tuning in vertebrate hair cells. Biophysical Journal 71: 430–442PubMedCrossRefGoogle Scholar
  146. Gosset P, Ghezala GA, Korn B, Yapso ML, Poutska A, Lehrach H, Sinet PM, Creau N (1997) A new inward rectifier potassium channel gene (KCNJ15) localized on chromosome 21 in the Down syndrome chromosome region 1 (DCR1). Genomics 44: 237–241PubMedCrossRefGoogle Scholar
  147. Grafe P, Rimpel J, Reddy MM, TenBruggencate G (1982) Changes of intracellular sodium and potassium ion concentrations in frog spinal motoneurons induced by repetitive synaptic stimulation. Neuroscience 7: 3213–3220PubMedCrossRefGoogle Scholar
  148. Grigg JJ, Kozasa T, Nakajima Y, Nakajima S (1996) Single-channel properties of a G-protein-coupled inward rectifier potassium channel in brain neurons. Journal of Neurophysiology 75: 318–328PubMedGoogle Scholar
  149. Gulbis JM, Zhou M, Mann S, MacKinnon R (2000). Structure of the cytoplasmic β subunit-T1 assembly of voltage-dependent K+ channels. Science 289: 123–127.PubMedCrossRefGoogle Scholar
  150. Guo D, Lu Z (2000a). Mechanism of cGMP-gated channel block by intracellular polyamines. Journal of General Physiology 115: 783–797.PubMedCrossRefGoogle Scholar
  151. Guo D, Lu Z (2000b). Mechanism of IRK1 channel block by intracellular polyamines. Journal of General Physiology 115: 799–813.PubMedCrossRefGoogle Scholar
  152. Guo D, Lu Z (2000c). Pore block versis intrinsic gating in the mechanism of inward rectification in strongly rectifying IRK1 channels. Journal of General Physiology 116: 561–568.PubMedCrossRefGoogle Scholar
  153. Guo D, Lu Z (2001). Kinetics of inward-rectifier K+ channel block by quaternary alkylammonium ions: dimensions and properties of the inner pore. Journal of General Physiology 117: 395–405.PubMedCrossRefGoogle Scholar
  154. Guo L, Kubo Y (1998). Comparison of the open-close kinetics of the cloned inward rectifier K+ channel IRK1 and its point mutant (Q140E) in the pore region. Receptors & Channels 5: 273–289.Google Scholar
  155. Hagiwara S, Jaffe LA (1979) Electrical properties of egg cell membranes. Annual Reviews of Biophysics and Bioengineering 8: 385–416CrossRefGoogle Scholar
  156. Hagiwara S, Miyazaki S, Krasne S, Ciani S (1977) Anomalous permeabilities of the egg cell membrane of a starfish in K+-Tl+ mixtures. Journal of General Physiology 70: 269–281.PubMedCrossRefGoogle Scholar
  157. Hagiwara S, Miyazaki S, Moody W, Patlak J (1978). Blocking effects of Ba and H ions on the K current during anomalous rectification in the starfish egg. Journal of Physiology 279: 167–185.PubMedGoogle Scholar
  158. Hagiwara S, Miyazaki S, Rosenthal NP (1976) Potassium current and the effect of cesium on this current during anomalous rectification of the egg cell membrane of a starfish. Journal of General Physiology 67: 621–638.PubMedCrossRefGoogle Scholar
  159. Hagiwara S., Takahashi K (1974). The anomalous rectification and cation selectivity of the membrane of a starfish egg. Journal of Membrane Biology 18: 61–80.PubMedCrossRefGoogle Scholar
  160. Hagiwara S, Yoshii M (1979). Effects of internal potassium and sodium on the anomalous rectification of the starfish egg as examined by internal perfusion. Journal of Physiology 292: 251–265.PubMedGoogle Scholar
  161. Hansen CA, Schroering AG, Carey DJ, Robishaw JD (1994) Localization of a heterotrimeric G protein γ subunit to focal adhesions and associated stress fibers. Journal of Cell Biology 126: 811–819PubMedCrossRefGoogle Scholar
  162. Hardie RC, Raghu P, Moore S, Juusola M, Baines RA, Sweeney ST (2001). Calcium influx via trp channels is required to maintain PIP2 levels in Drosophila photoreceptors. Neuron 30: 149–159.PubMedCrossRefGoogle Scholar
  163. He C, Zhang H, Mirshahi T, Logothetis DE (1999). Identification of a potassium channel site that interacts with G protein βγ subunits to mediate agonist-induced signaling. Journal of Biological Chemistry 274: 12517–12524.PubMedCrossRefGoogle Scholar
  164. Hedin KE, Lim NF, Clapham DE (1996) Cloning of a Xenopus laevis inwardly rectifying K+ channel subunit that permits GIRK1 expression of IKACh currents in oocytes. Neuron 16: 423–429PubMedCrossRefGoogle Scholar
  165. CHO HC Tsushima RG, Nguyen T-TT, Guy HR, Backx PH (2000). Two critical cysteine residues implicated in disulfide bond formation and proper folding of Kir2.1. Biochemistry: 39: 4649–4657.PubMedCrossRefGoogle Scholar
  166. Heginbotham I, Lu Z, Abramson T, MacKinnon R (1994). Mutations in the K+ channel signature sequence. Biophysical Journal 66: 1061–1067.PubMedCrossRefGoogle Scholar
  167. Heiny JA, Ashcroft FM, Vergara J (1983). T-system optical signals associated with inward rectification in skeletal muscle. Nature 301: 164–166.PubMedCrossRefGoogle Scholar
  168. Henry P, Pearson WL, Nichols CG (1996). Protein kinase C inhibition of cloned inward rectifier (HRK1/Kir2.3) K+ channels expressed in Xenopus oocytes. Journal of Physiology 495: 681–688.PubMedGoogle Scholar
  169. Herlitze S, Ruppersberg JP, Mark MD (1999) New roles for RGS2, 5, and 8 on the ratio-dependent modulation of recombinant GIRK channels expressed in Xenopus oocytes. Journal of Physiology (1999) 517: 341–352.PubMedCrossRefGoogle Scholar
  170. Hestrin S (1981). The interaction of potassium with the activation of anomalous rectification in frog muscle membrane. Journal of Physiology 317: 497–508.PubMedGoogle Scholar
  171. Hibino H, Inanobe A, Tanemoto M, Fujita A, Doi K, Kubo T, Hata Y, Takai Y, Kurachi Y (2000). Anchoring proteins confer G protein sensitivity to an inward rectifier K+ channel through the GK domain. EMBO Journal 19: 78–83.PubMedCrossRefGoogle Scholar
  172. Hilgemann DW, Ball R (1996). Regulation of cardiac Na+, Ca2+ exchanger and K(ATP) potassium channels by PIP2. Science 273: 956–959.PubMedCrossRefGoogle Scholar
  173. Hill JJ, Peralta EG (2001) Inhibition of a Gi-activated potassium channel (GIRK1/4) by the Gq-coupled m1 muscarinic acetylcholine receptor. Journal of Biological Chemistry 276: 5505–5510.PubMedCrossRefGoogle Scholar
  174. Hille B (1973) Potassium channels in myelinated nerve: selective permeability to small cations. Journal of General Physiology 61: 669–686.PubMedCrossRefGoogle Scholar
  175. Hille B (2001). Ionic Channels of Excitable Membranes 3rd edition. Sinauer, Sunderland Mass. 814pp.Google Scholar
  176. Hille B, Schwarz W (1978). Potassium channels as multi-ion single file pores. Journal of General Physiology 72: 409–442.PubMedCrossRefGoogle Scholar
  177. Ho IHM, Murrell-Lagnado RD (1999a). Molecular mechanism for sodium-dependent activation of G protein-gated K+ channels. Journal of Physiology 520: 645–651.PubMedCrossRefGoogle Scholar
  178. Ho IHM, Murrell-Lagnado RD (1999b) Molecular determinants for sodium-dependent activation of G protein-gated K+ channels. Journal of Biological Chemistry 274: 8639–8648.PubMedCrossRefGoogle Scholar
  179. Ho K, Nichols CG, Lederer WJ, Lytton J, Vassilev PM, Kanazirska MV, Hebert SC (1993) Cloning and expression of an inwardly rectifying ATP-regulated potassium channel. Nature 362: 31–38.PubMedCrossRefGoogle Scholar
  180. Hodgkin AL (1992) Chance & Design: reminiscences of science in peace and war. Cambridge University Press 412pp.Google Scholar
  181. Hodgkin AL, Horowicz P (1959a) Movements of Na and K in single muscle fibres. Journal of Physiology 145: 405–432PubMedGoogle Scholar
  182. Hodgkin AL, Horowicz P (1959b). The influence of potassium and chloride ions on the membrane potential of single muscle fibres. Journal of Physiology 148: 127–160.PubMedGoogle Scholar
  183. Hodgkin AL, Horowicz P (1960). The effect of sudden changes in ionic concentration on the membrane potential of single muscle fibres. Journal of Physiology 153: 370–385.PubMedGoogle Scholar
  184. Hodgkin AL, Huxley AF, Katz B (1949) Ionic currents underlying activity in the giant axon of the squid. Archives des Sciences Physiologiques 3: 129–150Google Scholar
  185. Hodgkin AL, Keynes RD (1955). The potassium permeability of a giant nerve fibre. Journal of Physiology 128: 61–88.PubMedGoogle Scholar
  186. Horie M, Irisawa H (1987) Rectification of muscarinic K+ current by magnesium ion in guinea pig atrial cells. American Journal of Physiology 253:H210–214PubMedGoogle Scholar
  187. Horie M, Irisawa H (1989) Dual effects of intracellular magnesium on muscarinic potassium channel current in single guinea-pig atrial cells. Journal of Physiology 408:313–332PubMedGoogle Scholar
  188. Horio Y, Hibino H, Inanobe A, Yamada M, Ishii M, Tada Y, Satoh E, Hata Y, Takai Y, Kurachi Y (1997) Clustering and enhanced activity of an inwardly rectifying potassium channel, Kir4.1, by an anchoring protein, PSD-95/SAP90. Journal of Biological Chemistry 272:12885–12888PubMedCrossRefGoogle Scholar
  189. Horio Y, Kurachi Y (1999). Glial inwardly rectifying potassium channels. Current Topics in Membranes 46:471–484Google Scholar
  190. Hoshi T, Zagotta WN, Aldrich RW (1990). Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science 250:533–538.PubMedCrossRefGoogle Scholar
  191. Hou P, Yan S, Tang W, Nelson DJ (1999) The inwardly rectifying K+ channel subunit GIRK1 rescues the GIRK2 weaver phenotype. Journal of Neuroscience 19:8327–8336.PubMedGoogle Scholar
  192. Huang C-J, Moczydlowski E (2001). Cytoplasmic polyamines as permeant blockers and modulators of the voltage-gated sodium channel. Biophysical Journal 80:1262–1279.PubMedGoogle Scholar
  193. Huang CL, Fen S, Hilgemann DW (1998). Direct activation of inward rectifier potassium channels by PIP2 and its stabilisation by Gbetagamma. Nature 391:803–806.PubMedCrossRefGoogle Scholar
  194. Huang CL, Jan YN, Jan LY (1997) Binding of the G protein βψ subunit to multiple regions of G protein-gated inward-rectifying K+ channels. FEBS Lett 405:291–298PubMedCrossRefGoogle Scholar
  195. Huang CL, Slesinger PA, Casey PJ, Jan YN, Jan LY (1995) Evidence that direct binding of Gβψ to the GIRK1 G protein-gated inwardly rectifying K+ channel is important for channel activation. Neuron 15:1133–1143PubMedCrossRefGoogle Scholar
  196. Hughes BA, Kumar G, Yuan Y, Swaminathan A, Yan D, Sharma A, Plumley L, Yang-Feng TL, Swaroop A (2000). Cloning and functional expression of human retinal Kir2.4, a pH-sensitive inwardly rectifying K+ channel. American Journal of Physiology 279:C771–C784PubMedGoogle Scholar
  197. Ibarra J, Morley GE, Delmar M (1991). Dynamics of the inward rectifier K+ current during the action potential of guinea pig ventricular myocytes. Biophysical Journal 60: 1534–1539.PubMedCrossRefGoogle Scholar
  198. Inagaki N, Gonoi T, Clement IV JP, Namba N, Inazawa J, Gonzalez G, Aguilar-Bryan L, Seino S, Bryan J (1995a) Reconstitution of I(KATP); an inward rectifier subunit plus the sulfonylurea receptor. Science 270:1166–1170PubMedCrossRefGoogle Scholar
  199. Inagaki N, Gonoi T, Seino S (1997). Subunit stoichiometry of the pancreatic beta-cell ATP-sensitive K+ channel. FEBS Letters 409:232–236.PubMedCrossRefGoogle Scholar
  200. Inagaki N, Tsuura Y, Namba N, Masuda K, Gonoi T, Horie M, Seino Y, Mizuta M, Seino S (1995b) Cloning and functional characterization of a novel ATP-sensitive potassium channel ubiquitously expressed in rat tissues, including pancreatic islets, skeletal muscle, and heart. Journal of Biological Chemistry 270:5691–5694.PubMedCrossRefGoogle Scholar
  201. Inanobe A, Horio Y, Fujita A, Tanemoto M, Hibino H, Inageda K, Kurachi Y (1999) Molecular cloning and characterization of a novel splicing variant of the Kir3.2 subunit predominantly expressed in mouse testis. Journal of Physiology 521:19–30.PubMedCrossRefGoogle Scholar
  202. Inanobe A, Ito H, Ito M, Hosoya Y, Kurachi Y (1995a) Immunological and physical characterization of the brain G protein-gated muscarinic potassium channel. Biochemical and Biophysical Research Communications 217:1238–1244PubMedCrossRefGoogle Scholar
  203. Inanobe A, Morishige KI, Takahashi N, Ito H, Yamada M, Takumi T, Nishina H, Takahashi K, Kanaho Y, Katada T, Kurachi Y (1995b), Gβψ directly binds to the carboxyl terminus of the G protein-gated muscarinic K+ channel, GIRK1. Biochemical and Biophysical Research Communications 212:1022–1028PubMedCrossRefGoogle Scholar
  204. Iñiguez-Lluhi JA, Simon MJ, Robishaw JD, Gilman AG (1992) G protein βψ subunits synthesized in Sf9 cells. Journal of Biological Chemistry 267:23409–23417PubMedGoogle Scholar
  205. Inoue M, Nakajima S, Nakajima Y (1988) Somatostatin induces an inward rectification in rat locus coeruleus neurones through a pertussis toxin-sensitive mechanism. Journal of Physiology 407:177–198PubMedGoogle Scholar
  206. Isa T, Lino M, Itazawa S-I, Ozawa S (1995) Spermine mediates inward rectification of Ca2+-permeable AMPA receptor channels. Neuroreport 6:2045–2048.PubMedCrossRefGoogle Scholar
  207. Ishihara K (1997). Time dependent outward currents through the inward rectifier potassium channel IRK1. Journal of General Physiology 109:229–243.PubMedCrossRefGoogle Scholar
  208. Ishihara K, Ehara T (1998). A repolarization-induced transient increase in the outward current of the inward rectifier K+ channel in guinea-pig cardiac myocytes. Journal of Physiology 510:755–771.PubMedCrossRefGoogle Scholar
  209. Ishihara K, Hiraoka M, Ochi R (1996). The tetravalent organic cation spermine causes the gating of the IRK1 channel expressed in murine fibroblast cells. Journal of Physiology 491:367–381.PubMedGoogle Scholar
  210. Ishihara K, Mitsuiye T, Noma A, Takano M (1989). The Mg2+ block and intrinsic gating underlying inward rectification of the K+ current in guinea-pig cardiac myocytes. Journal of Physiology 419:297–320.PubMedGoogle Scholar
  211. Ishii K, Yamagishi T, Taira N (1994). Cloning and functional expression of a cardiac inward rectifier K+ channel. FEBS Letters 338:107–111.PubMedCrossRefGoogle Scholar
  212. Ishii M, Horio Y, Tada Y, Hibino H, Inanobe A, Ito M, Yamada M, Gotow T, Uchiyama Y, Kurachi Y (1997) Expression and clustered distribution of an inwardly rectifying potassium channel, K(AB)-2/Kir4.1, on mammalian retinal Muller cell membrane: their regulation by insulin and laminin signals. Journal of Neuroscience 17:7725–7735.PubMedGoogle Scholar
  213. Isomoto S, Kondo C, Kurachi Y (1997). Inwardly rectifying potassium channels: Their molecular heterogeneity and function. Japanese Journal of Physiology 47:11–39PubMedCrossRefGoogle Scholar
  214. Isomoto S, Kondo C, Takahashi N, Matsumoto S, Yamada M, Takumi T, Horio Y, Kurachi Y (1996) A novel ubiquitously distributed isoform of GIRK2 (GIRK2B) enhances GIRK1 expression of the G-protein-gated K+ current in Xenopus oocytes. Biochemical and Biophysical Research Communications 218:286–291.PubMedCrossRefGoogle Scholar
  215. Ito H, Tung RT, Sugimoto T, Kobayashi I, Takahashi K, Katada T, Ui M, Kurachi Y (1992) On the mechanism of G protein βψ subunit activation of the muscarinic K+ channel in guinea pig atrial cell membrane. Journal of General Physiology 99:961–983PubMedCrossRefGoogle Scholar
  216. Ivanova-Nikolova TT, Breitwieser GE (1997) Effector contributions to Gβψ-mediated signaling as revealed by muscarinic potassium channel gating. Journal of General Physiology 109:245–253PubMedCrossRefGoogle Scholar
  217. Ivanova-Nikolova TT, Nilolov EN, Hansen C, Robishaw JD (1998) Muscarinic K+ channel in the heart. Modal regulation by G protein beta gamma subunits. J Gen Physiol 112:199–210PubMedCrossRefGoogle Scholar
  218. Jackson MB, Wong BS, Morris CE, Lecar H (1983) Successive openings of the same acetylcholine receptor channel are correlated in open time. Biophysical Journal 42:109–114.PubMedGoogle Scholar
  219. Jan LY, Jan YN (1982) Peptidergic transmission in sympathetic ganglia of the frog. Journal of Physiology 327:219–246PubMedGoogle Scholar
  220. Jan LY, Jan YN (1994) Potassium channels and their evolving gates. Nature 371:119–122.PubMedCrossRefGoogle Scholar
  221. Jan LY, Jan YN (1997). Cloned potassium channels from eukaryotes and prokaryotes. Annual Reviews of Neuroscience 20:91–123CrossRefGoogle Scholar
  222. Janmey PA, Xian W, Flanagan LA (1999). Controlling cytoskeletal structure by phosphoinositide-protein interactions: phosphoinositide binding protein domains and effects of lipid packing. Chemistry and Physics of Lipids 101:93–107.PubMedCrossRefGoogle Scholar
  223. Jelacic TM, Kennedy ME, Wickman K, Clapham DE (2000). Functional and biochemical evidence for G-protein-gated inwardly rectifying K+ (GIRK) channels composed of GIRK2 and GIRK3. Journal of Biological Chemistery 275:36211–36216.CrossRefGoogle Scholar
  224. Jelacic TM, Sims SM, Clapham, DE (1999). Functional expression and characterization of G-protein-gated inwardly rectifying K+ channels containing GIRK3. Journal Membrane Biologn 169:123–129.CrossRefGoogle Scholar
  225. Jiang ZG, Pessia M, North RA (1994) Neurotensin excitation of rat ventral tegmental neurones. Journal of Physiology 474:119–129PubMedGoogle Scholar
  226. John SA, Monck JR, Weiss JN, Ribalet B (1998). The sulphonylurea receptor SUR1 regulates ATP-sensitive mouse Kir6.2 K+ channel linked to the green fluorescent protein in human embryonic kidney cells (HEK 293). Journal of Physiology 510:333–345.PubMedCrossRefGoogle Scholar
  227. Jones SVP (1996). Modulation of the inwardly rectifying potassium channel IRK1 by the m1 muscarinic receptor. Molecular Pharmacology 49:662–667.PubMedGoogle Scholar
  228. Jones SVP (1997). Dual modulation of an inwardly rectifying potassium conductance. Neuropharmacology 36:209–215.PubMedCrossRefGoogle Scholar
  229. Kandel ER, Tauc L (1966). Anomalous rectification in the metacerebral giant cells and its concequences for synaptic transmission. Journal of Physiology 183:287–304.PubMedGoogle Scholar
  230. Kang JX, Xiao Y-F, Leaf A (1995). Free, long-chain, polyunsaturated fatty acids reduce membrane electrical excitability in neonatal rat cardiac myocytes. Proceedings of the National Academy of Sciences USA 92:3997–4001.CrossRefGoogle Scholar
  231. Karschin A, Wischmeyer E (1995). Identification of G protein-regulated inwardly rectifying K+ channels in rat brain oligodendrocytes. Neurosci Lett 183:135–138PubMedCrossRefGoogle Scholar
  232. Karschin A, Wischmeyer E, Davidson N, Lester HA (1994). Fast inhibition of inwardly rectifying K+ channels by multiple neurotransmitter receptors in oligodendroglia. European Journal of Neuroscience 6:1756–1764.PubMedCrossRefGoogle Scholar
  233. Karschin C, DiBmann E, Stühmer W, Karschin A (1996). IRK(1–3) and GIRK(1–4) inwardly rectifying K+ channel mRNAs are differentially expressed in the adult rat brain. Journal of Neuroscience 16:3559–3570PubMedGoogle Scholar
  234. Karschin C, Karschin A (1997). Ontogeny of gene expression of Kir channel subunits in the rat. Molecular & Cellular Neuroscience 10:131–148.CrossRefGoogle Scholar
  235. Karschin C, Schreibmayer W, Dascal N, Lester H, Davidson N, Karschin A (1994) Distribution and localization of a G protein-coupled inwardly rectifying K+ channel in the rat. FEBS Letters 348:139–144.PubMedCrossRefGoogle Scholar
  236. Katz B (1949): Les constantes électriques de la membrane du muscle. Archives des Sciences Physiologiques 3:285–299.Google Scholar
  237. Kennedy ME, Nemec J, Corey S, Wickman K, Clapham DE (1999). GIRK4 confers appropriate processing and cell surface localization to G-protein gated potassium channels. Journal of Biological Chemistry 274:2571–2582.PubMedCrossRefGoogle Scholar
  238. Kerkut GA, Thomas RC (1965) An electrogenic sodium pump in snail nerve cells. Comparative Biochemistry and Physiology 14:167–183PubMedCrossRefGoogle Scholar
  239. Kim D (1991) Modulation of acetylcholine-activated K+ channel function in rat atrial cells by phosphorylation. Journal of Physiology 437:133–155.PubMedGoogle Scholar
  240. Kim D, Bang H (1999). Modulation of rat atrial G protein-coupled K+ channel function by phospholipids. Journal of Physiology 517:59–74.PubMedCrossRefGoogle Scholar
  241. Kim E, Niethammer M, Rothschild A, Jan YN, Sheng M (1995). Clustering of Shaker-type K+ channels by interaction with a family of membrane-associated guanylate kinases. Nature 378:85–88.PubMedCrossRefGoogle Scholar
  242. Kim KM, Nakajima S, Nakajima Y (1997) Dopamine and GABA receptors in cultured substantia nigra neurons: correlation of electrophysiology and immunocytochemistry. Neuroscience 78:759–769.PubMedCrossRefGoogle Scholar
  243. Kim KM, Nakajima Y, Nakajima S (1995) G protein-coupled inward rectifier activated by dopamine agonists in cultured substantia nigra neurons. Neuroscience 69:1145–1158PubMedCrossRefGoogle Scholar
  244. Kim SJ, Kerst G, Schreiber R, Pavenstadt H, Greger R, Hug MJ, Bleich M (2000). Inwardly rectifying K+ channels in the basolateral membrane of rat pancreatic acini. Pflügers Archiv 441:331–340.PubMedCrossRefGoogle Scholar
  245. Kirsch GE, Nichols RA, Nakajima S (1977) Delayed rectification in the transverse tubules. Origin of the late after-potential in frog skeletal muscle. Journal of General Physiology 70:1–21.PubMedCrossRefGoogle Scholar
  246. Kisselev O, Gautam N (1993) Specific interaction with rhodopsin is dependent on the g subunit type in a G protein. Journal of Biological Chemistry 268:24519–24522PubMedGoogle Scholar
  247. Kleuss C, Hescheler J, Ewel C, Rosenthal W, Schultz G, Wittig B (1991) Assignment of G-protein subtypes to specific receptors inducing inhibition of calcium currents. Nature 353:43–48PubMedCrossRefGoogle Scholar
  248. Kleuss C, Scherubl H, Hescheler J, Schultz G, Wittig B (1992) Different β-subunits determine G-protein interaction with transmembrane receptors. Nature 358:424–426PubMedCrossRefGoogle Scholar
  249. Kleuss C, Scherubl H, Hescheler J, Schultz G, Wittig B (1993) Selectivity in signal transduction determined by β subunits of heterotrimeric G proteins. Science 259:832–834PubMedCrossRefGoogle Scholar
  250. Knot HJ, Zimmermann PA, Nelson MT (1996). Extracellular K+-induced hyperpolarizations and dilatation of rat coronary and cerebral arteries involve inward rectifier K+ channels. Journal of Physiology 492:419–430.PubMedGoogle Scholar
  251. Kobayashi T, Ikeda K, Ichikawa T, Abe S, Togashi S, Kumanishi T (1995) Molecular cloning of a mouse G-protein-activated K+ channel (mGIRK1) and distinct distributions of three GIRK (GIRK1, 2 and 3) mRNAs in mouse brain. Biochemical and Biophysical Research Communications 208:1166–1173PubMedCrossRefGoogle Scholar
  252. Kobertz WR, Williams C, Miller C (2000) Hanging gondola structure of the T1 domain in a voltage gated K+ channel. Biochemistry 39:10437–10352.CrossRefGoogle Scholar
  253. Kobrinsky E, Mirshahi T, Zhang H, Jin T, Logothetis DE (2000) Receptor-mediated hydrolysis of plasma membrane messenger PIP2 leads to K+-current desensitization. Nature Cell Biologn 2:507–514.CrossRefGoogle Scholar
  254. Kofuji P, Davidson N, Lester HA (1995) Evidence that neuronal G-protein-gated inwardly rectifying K+ channels are activated by Gβγ subunits and function as heteromultimers. Proceedings of the National Academy of Sciences USA 92:6542–6546CrossRefGoogle Scholar
  255. Kofuji P, Doupnik CA, Davidson N, Lester HA (1996a) A unique P-region residue is required for slow voltage-dependent gating of a G protein-activated inward rectifier K+ channel expressed in Xenopus oocytes. Journal of Physiology 490.3:633–645Google Scholar
  256. Kofuji P, Hofer M, Millen KJ, Millonig JH, Davidson N, Lester HA, Hatten M (1996b). Functional analysis of the weaver mutant GIRK2 K+ channel and rescue of weaver granule cells. Neuron 16:941–952.PubMedCrossRefGoogle Scholar
  257. Kondo C, Isomoto S, Matsumoto S, Yamada M, Horio Y, Yamashita S, Takemura-Kameda K, Matsuzawa Y, Kurachi Y (1996) Cloning and functional expression of a novel isoform of ROMK inwardly rectifying ATP-dependent K+ channel, ROMK6 (Kir1.1f). FEBS Letters 399:122–126PubMedCrossRefGoogle Scholar
  258. Korchev YE, Bashford CL, Alder GM, Apel PY, Edmonds DT, Lev AA, Nandi K, Zima AV, Pasternak CA (1997) A novel explanation for fluctuations of ion current through narrow pores. FASEB Journal 11: 600–608PubMedGoogle Scholar
  259. Koumi SI, Wasserstrom JA, Ten Eick RE (1995a) β-adrenergic and cholinergic modulation of the inwardly rectifying K+ current in guinea-pig ventricular myocytes. Journal of Physiology 486:647–659PubMedGoogle Scholar
  260. Koumi SI, Wasserstrom JA, Ten Eick RE (1995b) β-adrenergic and cholinergic modulation of inward rectifier K+ channel function and phosphorylation in guinea-pig ventricle. Journal of Physiology 486:661–678PubMedGoogle Scholar
  261. Kovoor, A., Chen, C-K, He, W., Wensel, T.G., Simon, M.I., and Lester H.A. (2000) Coexpression of Gβ5 enhances the function of two Gγ subunit-like domain-containing regulators of G protein signaling proteins. Journal of Biological Chemistry 275:3397–3402PubMedCrossRefGoogle Scholar
  262. Koyama H, Morishige K-I, Takahashi N, Zanelli JS, Fass DN, Kurachi Y (1994) Molecular cloning, functional expression and localization of a novel inward rectifier potassium channel in the rat brain. FEBS Letters 341:303–307PubMedCrossRefGoogle Scholar
  263. Koyano K, Velimirovic BM, Grigg JJ, Nakajima S, Nakajima Y (1993) Two signal transduction mechanisms of substance P-induced depolarization in locus coeruleus neurons. European Journal of Neuroscience 5: 1189–1197PubMedCrossRefGoogle Scholar
  264. Krapivinsky G, Gordon EA, Wickman B, Velimirovic B, Krapivinsky L, Clapham DE (1995a) The G protein gated atrial K+ channel IK(Ach) is a hetermomultimer of 2 inwardly rectifying K+ channel proteins. Nature 374:135–141PubMedCrossRefGoogle Scholar
  265. Krapivinsky G, Kennedy ME, Nemec J, Medina I, Krapivinsky L, Clapham DE (1998a) Gβγ binding to GIRK4 subunit is critical for G protein-gated K+ channel activation. Journal of Biological Chemistry 273:16946–16952PubMedCrossRefGoogle Scholar
  266. Krapivinsky G, Krapivinsky L, Wickman K, Clapham DE (1995b) Gβγ binds directly to the G protein-gated K+ channel, IKACh. Journal of Biological Chemistry 270:29059–29062PubMedCrossRefGoogle Scholar
  267. Krapivinsky G, Medina I, Eng L, Krapivinsky L, Yang Y, Clapham DE (1998b) Novel inward rectifier K+ channel with unique pore properties. Neuron 20: 995–1005PubMedCrossRefGoogle Scholar
  268. Kuba K, Koketsu K (1976) Analysis of the slow excitatory postsynaptic potential in bullfrog sympathetic ganglion cells. Japanese Journal of Physiology 26:651–669PubMedGoogle Scholar
  269. Kubo Y (1996) Effects of extracellular cations and mutations in the pore region of the inward rectifier K+ channel IRK1. Receptors & Channels 4: 73–83Google Scholar
  270. Kubo Y, Baldwin TJ, Jan YN & Jan LY (1993a) Primary structure and functional expression of a mouse inward rectifier potassium channel. Nature 362:127–133PubMedCrossRefGoogle Scholar
  271. Kubo Y, Miyashita T, Kubokawa K (1996) A weakly inward rectifying potassium channel of the salmon brain. Glutamate 179 in the second transmembrane domain is insufficient for strong rectification. Journal of Biological Chemistry 271:15729–15735PubMedCrossRefGoogle Scholar
  272. Kubo Y, Murata Y (2001) Control of rectification and permeation by two distinct sites after the second transmembrane region in Kir2.1 K+ channel. Journal of Physiology 531:645–660PubMedCrossRefGoogle Scholar
  273. Kubo Y, Reuveny E, Slesinger PA, Jan YN & Jan LY (1993b) Primary structure and functional expression of a rat G-protein coupled muscarinic potassium channel. Nature 364:802–806PubMedCrossRefGoogle Scholar
  274. Kubo Y, Yoshimichi M, Heinemann SH (1998) Probing pore topology and conformational changes of Kir2.1 potassium channels by cysteine scanning mutagenesis. FEBS Letters 435:69–73PubMedCrossRefGoogle Scholar
  275. Kuffler SW, Sejnowski TJ (1983) Peptidergic and muscarinic excitation at amphibian sympathetic synapses. Journal of Physiology 341:257–278PubMedGoogle Scholar
  276. Kumpf RA Dougherty DA (1993) A mechanism for ion selectivity in potassium channels: computational studies of cation-p interactions. Science 261:1708–1710.PubMedCrossRefGoogle Scholar
  277. Kunkel MT, Peralta EG (1995) Identification of domains conferring G protein regulation on inward rectifier potassium channels. Cell 83:443–449PubMedCrossRefGoogle Scholar
  278. Kurachi Y (1985) Voltage-dependent activation of the inward rectifier potassium channel in the ventricular cell membrane of guinea-pig heart. Journal of Physiology 366:365–385PubMedGoogle Scholar
  279. Kurachi Y, Nakajima T, Sugimoto T (1986) On the mechanism of activation of muscarinic K+ channels by adenosine in isolated atrial cells: involvement of GTP-binding proteins. Pflügers Archiv 407:264–274PubMedCrossRefGoogle Scholar
  280. Kurachi Y, Nakajima T, Sugimoto T (1987) Short-term desensitization of muscarinic K+ channel current in isolated atrial myocytes and possible role of GTP-binding proteins: Pflügers Archiv 410:227–233PubMedCrossRefGoogle Scholar
  281. Kurschner C, Mermelstein PG, Holden WT, Surmeier DJ (1998) CIPP, a novel multivalent PDZ domain protein, selectively interacts with Kir4.0 family members, NMDA receptor subunits, neurexins, and neuroligins. Molecular & Cellular Neurosciences 11:161–172CrossRefGoogle Scholar
  282. Kürz LL, Kuhlke RD, Zhang HJ, Joho RH (1995) Side chain accessibilities in the pore of a K channel probed by sulfhyrdyl reagents after scanning cysteine mutagenesis. Biophysical Journal 68:900–905.PubMedGoogle Scholar
  283. Kusaka S, Inanobe A, Fujita A, Makino Y, Tanemoto M, Matsushita K, Tano Y, Kurachi Y (2001) Functional Kir7.1 channels localized at the root of apical processes in rat retinal pigment epithelium. Journal of Physiology 531:27–36PubMedCrossRefGoogle Scholar
  284. Kuschinsky W, Wahl M, Bosse O, Thurau K (1972) Perivascular potassium and pH as determinants of local pial arterial diameter in cats. Circulation Research 31:240–247PubMedGoogle Scholar
  285. Kwon G, Axelrod D, Neubig RR (1994) Lateral mobility of tetramethylrhodamine (TMR) labelled G protein α and βγ subunits in NG 108-15 cells. Cellular Signalling 6:663–679PubMedCrossRefGoogle Scholar
  286. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology 157:105–132PubMedCrossRefGoogle Scholar
  287. Lagrutta AA, Bond CT, Xia XM, Pessia M, Tucker S, Adelman JP (1996) Inward rectifier potassium channels:cloning, expression and structure-function studies. Japanese Heart Journal 37:651–660PubMedGoogle Scholar
  288. Lambright DB, Sondek J, Bohm A, Skiba NP, Hamm HE, Sigler PB (1996) The 2.0 Å crystal structure of a heterotrimeric G protein. Nature 379:311–319PubMedCrossRefGoogle Scholar
  289. Lancaster MK, Dibb KM, Quinn CC, Leach R, Lee J-K, Findlay JBC, Boyett MR (2000) Residues and mechanisms for slow activation and Ba2+ block of the cardiac muscarinic K+ channel, Kir3.1/Kir3.4. Journal of Biological Chemistry 275:35831–35839PubMedCrossRefGoogle Scholar
  290. Leaney JL, Dekker LV, Tinker A (2001) Regulation of a G protein-gated inwardly rectifying K+ channel by a Ca2+-independent protein kinase C. Journal of Physiology 534:367–379PubMedCrossRefGoogle Scholar
  291. Lee J-K, John SA, Weiss JN (1999) Novel gating mechanism of polyamine block in the strong inward rectifier K channel Kir2.1. Journal of General Physiology 113:555–563PubMedCrossRefGoogle Scholar
  292. Leech CA, Stanfield PR (1981) Inward rectification in frog skeletal muscle fibres and its dependence on membrane potential and external potassium. Journal of Physiology 319:295–309PubMedGoogle Scholar
  293. Lei Q, Jones MB, Talley EM, Schrier AD, McIntire WE, Garrison JC, and Bayliss DA (2000) Activation and inhibition of G protein-coupled inwardly rectifying potassium (Kir3) channels by G protein βγ subunits. Proceedings of the National Academy of Sciences USA 97:9771–9776.CrossRefGoogle Scholar
  294. Lei Q, Talley EM, Bayliss DA (2001) Receptor-mediated inhibition of G protein-coupled inwardly rectifying potassium channels involves Gαq family subunits, phospholipase C, and readily diffusible messenger. Journal of Biological Chemistry 276: 16720–16730.PubMedCrossRefGoogle Scholar
  295. Leonoudakis D, Mailliard WS, Wingerd KL, Clegg DO, Vandenberg CA (2001). Inward rectifier potassium channel Kir2.2 is associated with synapse-associated protein SAP97. Journal of Cell Science 114:987–998.PubMedGoogle Scholar
  296. Lesage F, Duprat F, Fink M, Guillemare E, Coppola T, Lazdunski M, Hugnot JP (1994) Cloning provides evidence for a family of inward rectifier and G-protein coupled K+ channels in the brain. FEBS Letters 353:37–42PubMedCrossRefGoogle Scholar
  297. Lesage F, Guillemare E, Fink M, Duprat F, Heurteaux C, Fosset M, Romey G, Barhanin J, Lazdunski M (1995) Molecular properties of neuronal G-protein-activated inwardly rectifying K+ channels. Journal of Biological Chemistry 270:28660–28667.PubMedCrossRefGoogle Scholar
  298. Leyland ML, Dart C, Spencer PJ, Sutcliffe MJ, Stanfield PR (1999). The possible role of a disculphide bond in forming functional Kir2.1 channels. Pflügers Archiv 438: 778–781.PubMedCrossRefGoogle Scholar
  299. Li M, Jan YN, Jan LY (1992). Specification of subunit assembly by the hydrophilic amino terminal domain of the Shaker potassium channel. Science 257: 1225–1230.PubMedCrossRefGoogle Scholar
  300. Li M, Unwin N, Stauffer KA, Jan YN, Jan LY (1994). Images of purified Shaker potassium channels. Current Biology 4: 110–115.PubMedCrossRefGoogle Scholar
  301. Li Y, Sternweis PM, Charnecki S, Smith TF, Gilman AG, Neer EJ, Kozasa T (1998) Sites for Gα binding on the G protein β subunit overlap with sites for regulation of phospholipase Cβ and adenylyl cyclase. Journal of Biological Chemistry 273:16265–16272PubMedCrossRefGoogle Scholar
  302. Liao YJ, Jan YN, Jan LY (1996) Heteromultimerization of protein-gated inwardly rectifying K+ channel protein GIRK1 and GIRK2 and their altered expression in weaver brain. Journal of Neuroscience 16: 7137–7150.PubMedGoogle Scholar
  303. Lim NF, Dascal N, Labarca C, Davidson N, Lester HA (1995) A G protein-gated K channel is activated via β2-adrenergic receptors and Gβγ subunits in Xenopus oocytes. Journal of General Physiology 105: 421–439PubMedCrossRefGoogle Scholar
  304. Liou HH, Zhou SS, Huang CL (1999). Regulation of ROMK1 channel by protein kinase A via a phosphatidylinositol 4,5-bisphosphate-dependent mechanism. Proceedings of the National Academy of Sciences USA 96:5820–5825.CrossRefGoogle Scholar
  305. Liu J-H, Bijlenga P, Fischer-Lougheed J, Occhiodoro T, Kaelin A, Bader CR, Bernheim L (1998). Role of an inward rectifier K+ current and of hyperpolarization in human myoblast formation. Journal of Physiology 510: 467–476.PubMedCrossRefGoogle Scholar
  306. Liu Y, Holmgren M, Jurman ME, Yellen G (1997). Gated access to the pore of a voltage-dependent K+ channel. Neuron 19: 175–184.PubMedCrossRefGoogle Scholar
  307. Liu Y, Liu D, Health L, Meyers DM, Krafte DS, Wagoner PK, Silvia CP Yu W, Curran ME (2001). Direct activation of an inwardly rectifying potassium channel by arachadonic acid. Molecular pharmacology 59: 1061–1068.PubMedGoogle Scholar
  308. Loew A, Ho Y-K, Blundell T, Bax B (1998) Phoducin induces a structural change in transducin βγ. Structure 6: 1007–1019.PubMedCrossRefGoogle Scholar
  309. Logothetis DE, Kim D, Northup JK, Neer EJ, Clapham DE (1988) Specificity of action of guanine nucleotide-binding regulatory protein subunits on the cardiac muscarinic K+ channel. Proceedings of the National Academy of Sciences USA 85: 5814–5818CrossRefGoogle Scholar
  310. Logothetis DE, Kurachi Y, Galper J, Neer EJ, Clapham DE (1987) The βγ subunits of GTP-binding proteins activate the muscarinic K+ channel in heart. Nature 325: 321–326PubMedCrossRefGoogle Scholar
  311. Lopatin AN, Makhina EN, Nichols CG (1984). Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification. Nature 372:366–369.CrossRefGoogle Scholar
  312. Lopatin AN, Makhina EN, Nichols CG (1995). The mechanism of inward rectification of potassium channels: ‘long-pore plugging’ by cytoplasmic polyamines. Journal of General Physiology 106:923–955.PubMedCrossRefGoogle Scholar
  313. Lopatin AN, Nichols CG (1996a) [K+] dependence of polyamine-induced rectification in inward rectifier potassium channels (IRK1, Kir2.1). Journal of General Physiology 108: 105–113.PubMedCrossRefGoogle Scholar
  314. Lopatin AN, Nichols CG (1996b) [K+] dependence of open channel conductance in cloned inward rectifier potassium channels (IRK1, Kir2.1) Biophysical Journal 71: 682–694PubMedGoogle Scholar
  315. Lopez-Barneo J, Hoshi T, Heinemann SH, Aldrich RW (1983). Effects of external cations and mutations in the pore region on C-type inactivation of Shaker potassium channels. Receptors & Channels 1: 61–71.Google Scholar
  316. Loussouarn G, Makhina EN, Rose T, Nichols CG (2000). Structure and dynamics of the pore of inwardly rectifying KATP channels. Journal of Biological Chemistry 275: 1137–1144.PubMedCrossRefGoogle Scholar
  317. Lü Q, Miller C (1995). Silver as a probe of pore forming residues in a potassium channel. Science 268 304–307.PubMedCrossRefGoogle Scholar
  318. Lu T, Nguyen B, Zhang X, Yang J (1999a). Architecture of a K+ channel inner pore revealed by stoichiometric covalent modification. Neuron 22: 571–580.PubMedCrossRefGoogle Scholar
  319. Lu T, Zhu Y-G, Yang J (1999b). Cytoplasmic amino and carboxyl domains form a wide intracellular vestibule in an inwardly rectifying potassium channel. Proceedings of the National Academy of Sciences USA 96: 9926–9931.CrossRefGoogle Scholar
  320. Lu Z, Klem AM, Ramu Y (2001). Ion conduction pore is conserved among potassium channels. Nature 413: 809–813.PubMedCrossRefGoogle Scholar
  321. Lu Z, MacKinnon R (1994) Electrostatic tuning of Mg2+ affinity in an inward-rectifier K+ channel. Nature 371: 243–246.PubMedCrossRefGoogle Scholar
  322. Lu Z, MacKinnon R (1997). Purification, characterization, and synthesis of an inwardrectifier K+ channel inhibitor from scorpion toxin. Biochemistry 36: 6936–6940.PubMedCrossRefGoogle Scholar
  323. Lucas JJ, Mellström B, Colado MI, Naranjo JR (1993). Molecular mechanisms of pain: serotonin1A receptor agonists trigger transactivation by c-fos of the prodynorphin gene in spinal cord neurons. Neuron 10: 599–611.PubMedCrossRefGoogle Scholar
  324. Luchian T, Dascal N, Dessauer C, Platzer D, Davidson N, Lester HA, Schreibmayer W (1997) A C-terminal peptide of the GIRK1 subunit directly blocks the G protein-activated K+ channel (GIRK) expressed in Xenopus oocytes. Journal of Physiology 505: 13–22PubMedCrossRefGoogle Scholar
  325. Lüscher C, Jan LY, Stoffel M, Malenka RC and Nicoll RA (1997) G protein-coupled inwardly rectifying K+ channels (GIRKs) mediate postsynaptic but not presynaptic transmitter actions in hippocampal neurons. Neuron 19: 687–695.PubMedCrossRefGoogle Scholar
  326. Ma D, Zerangue N, Lin YF, Collins A, Yu M, Jan YN, Jan LY (2001). Role of ER export signals in controlling surface potassium channel numbers. Science 291: 316–319.PubMedCrossRefGoogle Scholar
  327. MacKinnon R, Cohen SL, Kuo A, Lee A, Chait BT (1998). Structural conservation in prokaryotic and eukaryotic potassium channels. Science 280: 106–109.PubMedCrossRefGoogle Scholar
  328. MacKinnon R, Yellen G (1990). Mutations affecting TEA blockade and ion permeation in voltage-activated K+ channels. Science 250: 276–279.PubMedCrossRefGoogle Scholar
  329. Madison DV, Lancaster B, Nicoll RA (1987) Voltage clamp analysis of cholinergic action in the hippocampus. Journal of Neuroscience 7: 733–741.PubMedGoogle Scholar
  330. Makhina EN, Kelley AJ, Lopatin AN, Nichols CG (1994). Cloning and expression of a novel human brain inward rectifier potassium channel. Journal of Biological Chemistry 269: 20468PubMedGoogle Scholar
  331. Mark MD, Herlitze S (2000) G-protein mediated gating of inward-rectifier K+ channels. European Journal of Biochemistry 267:5830–5836.PubMedCrossRefGoogle Scholar
  332. Matsuda H (1988). Open-state substructure of inwardly rectifying potassium channels revealed by magnesium block in guinea-pig heart cells. Journal of Physiology 397:237–258.PubMedGoogle Scholar
  333. Matsuda H, Matsuura H, Noma A (1989). Triple-barrel structure of inwardly rectifying K+ channels revealed by Cs+ and Rb+ block in guinea-pig heart cells. Journal of Physiology 413: 139–157.PubMedGoogle Scholar
  334. Matsuda H, Saigusa A, Irisawa H (1987). Ohmic conductance through the inwardly rectifying K channel and blocking by internal Mg2+. Nature 325: 156–159.PubMedCrossRefGoogle Scholar
  335. Matsuda H, Stanfield PR (1989). Single inwardly rectifying potassium channels in cultured muscle cells from rat and mouse. Journal of Physiology 414:111–124PubMedGoogle Scholar
  336. McCarron JG, Halpern W (1990). Potassium dilates rat cerebral arteries by two independent mechanisms. American Journal of Physiology 259:H902–H908.PubMedGoogle Scholar
  337. McGurk JF, Bennett MVL, Zukin RS (1990). Polyamines potentiate responses of N-methyl-D-aspartate receptors expressed in Xenopus oocytes. Proceedings of the National Academy of Sciences USA 87: 9971–9974.CrossRefGoogle Scholar
  338. McNicholas CM, Guggino WB, Schweibert EM, Hebert SC, Giebisch G, Egan ME (1996). Sensitivity of a renal K+ channel (ROMK2) to the inhibitory sulfonylurea compound glibenclamide is enhanced by coexpression with the ATP-binding cassette transporter cystic fibrosis transmembrane regulator. Proceedings of the National Academy of Sciences USA 93: 8083–8088.CrossRefGoogle Scholar
  339. Medina I, Krapivinsky G, Arnold S, Kovoor P, Krapivinsky L, Clapham DE (2000) A switch mechanism for Gßγ activation of IKACh. Journal of Biological Chemistry 275: 29709–29716.PubMedCrossRefGoogle Scholar
  340. Meves H (1994). Modulation of ion channels by arachidonic acid. Progress in Neurobiology 43: 175–186.PubMedCrossRefGoogle Scholar
  341. Meyer T, Wellner-Kienitz, M-C, Biewald A, Bender K, Eickel A, Pott L (2001) Depletion of phosphatidylinositol 4,5-bisphosphate by activation of phospholipase C-coupled receptors causes slow inhibition but not desensitization of G protein-gated inward rectifier K+ current in atrial myocytes. Journal of Biological Chemistry 276: 5650–5658.PubMedCrossRefGoogle Scholar
  342. Mi H, Deerinck TJ, Jones M, Ellisman MH, Schwarz TL (1996). Inwardly rectifying K+ channels that may participate in K+ buffering are localized in microvilli of Schwann cells. Journal of Neuroscience 16:2421–2429.PubMedGoogle Scholar
  343. Mihara S, North RA, Surprenant A (1987) Somatostatin increases an inwardly rectifying potassium conductance in guinea-pig submucous plexus neurones. Journal of Physiology 390:335–355PubMedGoogle Scholar
  344. Minor DL, Masseling SJ, Jan YN, Jan LY (1999) Transmembrane structure of an inwardly rectifying potassium channel. Cell 96: 879–891.PubMedCrossRefGoogle Scholar
  345. Miyake M, Christie MJ, North RA (1989) Single potassium channels opened by opioids in rat locus ceruleus neurons. Proceedings of the National Academy of Sciences USA 86:3419–3422CrossRefGoogle Scholar
  346. Miyazawa A, Fujiyoshi Y, Stowell M, Unwin N (1999). Nicotinic acetylcholine receptor at 4.6Å resolution: transverse tunnels in the channel wall. Journal of Molecular Biology 288: 765–786.PubMedCrossRefGoogle Scholar
  347. Morishige K-I, Takahashi CN, Jahangir A, Yamada CM, Koyama H, Zanelli JS, Kurachi Y (1994). Molecular cloning and functional expression of a novel brain-specific inward rectifier potassium channel. FEBS Letters 346: 251–256.PubMedCrossRefGoogle Scholar
  348. Morishita R, Nakayama H, Isobe T, Matsuda T, Hashimoto Y, Okano T, Fukada Y, Mizuno K, Ohno S, Kozawa O, Kato K, Asano T (1995) Primary structure of a γ subunit of G protein, γ12, and its phosphorylation by protein kinase C. Journal of Biological Chemistry 270:29469–29475PubMedCrossRefGoogle Scholar
  349. Müllner C., Vorobiov D, Bera AK, Uezono Y, Yakubovich D, Frohnwieser-Steinecker B, Dascal N, Schreibmayer W (2000) Journal of General Physiology 115: 547–557.PubMedCrossRefGoogle Scholar
  350. Mumby SM, Casey PJ, Gilman AG, Gutowski S, Sternweis PC (1990) G protein γ subunits contain a 20-carbon isoprenoid. Proceedings of the National Academy of Sciences USA 87:5873–5877CrossRefGoogle Scholar
  351. Muntz KH, Sternweis PC, Gilman AG, Mumby SM (1992) Influence of γ subunit prenylation on association of guanine nucleotide-binding regulatory proteins with membranes. Molecular Biological Cell 3: 49–61Google Scholar
  352. Murer G, Adelbrecht C, Lauritzen I, Lesage F, Lazdunski M, Agid Y, Raisman-Vozari R (1997). An immunocytochemical study on the distribution of two G-protein-gated inward rectifier potassium channels (GIRK2 and GIRK4) in the adult rat brain. Neuroscience 80:345–357PubMedCrossRefGoogle Scholar
  353. Nakajima S, Iwasaki S, Obata K (1962). Delayed rectification and anomalous rectification in frog's skeletal muscle membrane. Journal of General Physiology 46:97–115PubMedCrossRefGoogle Scholar
  354. Nakajima S, Nakajima Y, Peachey LD (1973). Speed of repolarization and morphology of glycerol-treated frog muscle fibres. Journal of Physiology 234:465–480.PubMedGoogle Scholar
  355. Nakajima S, Takahashi K (1966) Post-tetanic hyperpolarization and electrogenic Na pump in stretch receptor neurone of crayfish. Journal of Physiology 187:105–127PubMedGoogle Scholar
  356. Nakajima Y, Nakajima S (1994) Signal transduction mechanisms of tachykinin effects on ion channels. In: Buck SH (ed). The tachykinin receptors. Humana Press Inc. Totowa, New Jersey, pp 285–327Google Scholar
  357. Nakajima Y, Nakajima S, Inoue M (1988) Pertussis toxin-insensitive G protein mediates substance P-induced inhibition of potassium channels in brain neurons. Proceedings of the National Academy of Sciences USA 85:3643–3647CrossRefGoogle Scholar
  358. Nakajima Y, Nakajima S, Kozasa T (1996) Activation of G protein-coupled inward rectifier K+ channels in brain neurons requires association of G protein βγ subunits with cell membrane. FEBS Letters 390:217–220PubMedCrossRefGoogle Scholar
  359. Nakamura N, Suzuki Y, Sakuta H, Ookata K, Kawahara K, Hirose S (1999). Inwardly rectifying K+ channel Kir7.1 is highly expressed in thyroid follicular cells, intestinal epithelial cells and choroid plexus epithelial cells: Implication for a functional coupling with Na+, K+-ATPase. Biochemical Journal 342: 329–336.PubMedCrossRefGoogle Scholar
  360. Nakamura TY, Artman M, Rudy B, Coetzee WA (1998). Inhibition of rat ventricular IK1 with antisense oigonucleotides targeted to Kir2.1 mRNA. American Journal of Physiology 274: H892–900.PubMedGoogle Scholar
  361. Namba N, Inagaki N, Gonoi T, Seino Y, Seino S (1996). Kir2.2v: a possible negative regulator of the inwardly rectifying K+ channel Kir2.2. FEBS Letters 386:211–214.PubMedCrossRefGoogle Scholar
  362. Navarro B, Kennedy ME, Velimirovic B, Bhat D, Peterson AS, Clapham DE (1996). Non-selective and G-insensitive weaver K+ channels. Science 272: 1950–1953.PubMedCrossRefGoogle Scholar
  363. Nehring RB, Wischmeyer E, Doring F, Veh RW, Sheng M, Karschin A (2000). Neuronal inwardly rectifying K+ channels differentially couple to PDZ proteins of the PSD-95/SAP90 family. Journal of Neuroscience 20: 156–162.PubMedGoogle Scholar
  364. Nelson CS, Marino JL, Allen CN (1997). Cloning and characterization of Kir3.1 (GIRK1) C-terminal alternative splice variants. Molecular Brain Research 46: 185–196.PubMedCrossRefGoogle Scholar
  365. Neubig RR (1994) Membrane organization in G-protein mechanisms. FASEB Journal 8:939–946PubMedGoogle Scholar
  366. Newman EA (1984). Regional specialization of retinal glial cell membrane. Nature 309: 155–157PubMedCrossRefGoogle Scholar
  367. Newman EA (1993) Inward-rectifying potassium channels in retinal glial (Müller) cells. Journal of Neuroscience 13:3333–3345PubMedGoogle Scholar
  368. Nichols CG, Lopatin AN (1997) Inward rectifier potassium channels. Annual Reviews of Physiology 59:171–191CrossRefGoogle Scholar
  369. Nilius B, Schwarz G, Droogmans G (1993) Modulation by histamine of an inwardly rectifying potassium channel in human endothelial cells. Journal of Physiology 472:359–371PubMedGoogle Scholar
  370. Niu XW, Meech RW (1998) The effect of polyamines on K(ATP) channels in guineapig ventricular myocytes. Journal of Physiology 508: 401–411.PubMedCrossRefGoogle Scholar
  371. Noma A (1983) ATP-regulated K+ channels in cardiac muscle. Nature 305:147–148PubMedCrossRefGoogle Scholar
  372. North RA (1989) Drug receptors and the inhibition of nerve cells. British Journal of Pharmacology 98:13–28PubMedGoogle Scholar
  373. North RA, Uchimura N (1989) 5-hydroxytryptamine acts at 5-HT2 receptors to decrease potassium conductance in rat nucleus accumbens neurones. Journal of Physiology 417:1–12PubMedGoogle Scholar
  374. North RA, Williams JT (1985) On the potassium conductance increased by opioids in rat locus coeruleus neurones. Journal of Physiology 364:265–280PubMedGoogle Scholar
  375. North RA, Williams JT, Surprenant A, Christie MJ (1987) μ and δ receptors belong to a family of receptors that are coupled to potassium channels. Proceedings of the National Academy of Sciences USA 84:5487–5491CrossRefGoogle Scholar
  376. Oh U, Ho Y-K, Kim D (1995) Modulation of the serotonin-activated K+ channel by G protein subunits and nucleotides in rat hippocampal neurons. Journal of Membrane Biological 147:241–253Google Scholar
  377. Ohmori H (1978). Inactivation kinetics and steady-state current noise in the anomalous rectifier of tunicate egg cell membranes. Journal of Physiology 281:77–89.PubMedGoogle Scholar
  378. Oishi K, Omori K, Ohyama H, Shingu K, Matsuda H (1998). Neutralization of aspartate residues in the murine inwardly rectifying K+ channel IRK1 affects the substate behaviour in Mg2+ block. Journal of Physiology 510:675–683.PubMedCrossRefGoogle Scholar
  379. Olesen SP, Bundgaard M (1993) ATP-dependent closure and reactivation of inward rectifier K+ channels in endothelial cells. Circulation Research 73:492–495PubMedGoogle Scholar
  380. Olesen SP, Davies PF, Clapham DE (1988) Muscarinic-activated K+ current in bovine aortic endothelial cells. Circulation Research 62:1059–1064.PubMedGoogle Scholar
  381. Oliva C, Cohen IS, Pennefather P (1990). The mechanism of rectification of i(K1) in canine Purkinje myocytes. Journal of General Physiology 96:299–318.PubMedCrossRefGoogle Scholar
  382. Orkand RK, Nicholls JG, Kuffler SW (1966) Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. Journal of Neurophysiology 29:788–806PubMedGoogle Scholar
  383. Osmanovic SS, Shefner SA (1987) Anomalous rectification in rat locus coeruleus neurons. Brain Research 417:161–166PubMedCrossRefGoogle Scholar
  384. Papazian DM, Schwarz TL, Tempel BL, Jan YN, Jan LY (1987) Cloning of genomic and complementary DNA from shaker, a putative potassium channel gene from Drosophila. Science 237:749–753PubMedCrossRefGoogle Scholar
  385. Pardo LA, Heinemann SH, Terlau H, Ludewig U, Lorra C, Pongs O, Stühmer W (1992). Extracellular K+ specifically modulates a rat brain K+ channel. Proceedings of the National Academy of Sciences USA 89:2466–2470.CrossRefGoogle Scholar
  386. Pascual JM, Shieh C-C, Kirsch GE, Brown AM (1995). K+ pore structure revealed by reporter cysteines at inner and outer surfaces. Neuron 14:1055–1063.PubMedCrossRefGoogle Scholar
  387. Patil N, Cox DR, Bhat D, Faham M, Myers RM, Peterson AS (1995) A potassium channel mutation in weaver mice implicates membrane excitability in granule cell differentiation. Nature Genetics 11:126–129.PubMedCrossRefGoogle Scholar
  388. Paulson OB, Newman EA (1987). Does the release of potassium from astrocyte endfeet regulate cerebral blood flow? Science 237:896–898.PubMedCrossRefGoogle Scholar
  389. Pawson T, Scott JD (1997) Signaling through scaffold, anchoring, and adaptor proteins. Science 278:2075–2080.PubMedCrossRefGoogle Scholar
  390. Pearson WL, Dourado M, Schreiber M, Salkoff L, Nichols CG. (1999). Expression of a functional Kir4 family inward rectifier K+ channel from a gene cloned from mouse liver. Journal of Physiology 514:655–665.CrossRefGoogle Scholar
  391. Pearson WL, Nichols CG (1998). Block of the Kir2.1 channel pore by alkylamine analogues of endogenous polyamines. Journal of General Physiology 112:351–363.PubMedCrossRefGoogle Scholar
  392. Peng L, Zhang H, Hirsch J, Logothetis DE (2000) The yeast βγ subunits of G proteins inhibit GIRK4 channels. Biophysical Journal 78:465A.Google Scholar
  393. Penington NJ, Kelly JS, Fox AP (1993a) Whole-cell recordings of inwardly rectifying K+ currents activated by 5-HT1A receptors on dorsal raphe neurones of the adult rat. Journal of Physiology (Lond) 469:387–405Google Scholar
  394. Penington NJ, Kelly JS, Fox AP (1993b) Unitary properties of potassium channels activated by 5-HT in acutely isolated rat dorsal raphe neurones. Journal of Physiology 469:407–426.PubMedGoogle Scholar
  395. Pennefather P, Oliva C, & Mulrine N (1992) Origin of the potassium and voltage dependence of the cardiac inwardly rectifying K-current, I (K1). Biophysical Journal 61:448–462.PubMedGoogle Scholar
  396. Pennefather PS, Heisler S, MacDonald JF (1988) A potassium conductance contributes to the action of somatostatin-14 to suppress ACTH secretion. Brain Research 444:346–350PubMedCrossRefGoogle Scholar
  397. Périer F, Radeke CM, Vandenberg CA (1994) Primary structure and characterization of a small-conductance inwardly rectifying potassium channel from human hippocampus. Proceedings of the National Academy of Sciences USA 91:6240–6244.CrossRefGoogle Scholar
  398. Perillán PR, Li X, Potts EA, Chen M, Bredt DS, Simard JM (2000). Inward rectifier K+ channel Kir2.3 (IRK3) in reactive astrocytes from adult rat brain. Glia 31: 181–192.PubMedCrossRefGoogle Scholar
  399. Perozo E, Cortes DM, Cuello LG (1999). Structural rearangements underlying K+-channel activation gating. Science 285:73–78.PubMedCrossRefGoogle Scholar
  400. Pessia M, Tucker SJ, Lee K, Bond CT, Adelman JP (1996). Subunit positional effects revealed by novel heteromeric inwardly rectifying K+ channels. EMBO Journal 15: 2980–2987.PubMedGoogle Scholar
  401. Peters R (1981) Translational diffusion in the plasma membrane of single cells as studied by fluorescence microphotolysis. Cell Biology International Reports 5:733–760PubMedCrossRefGoogle Scholar
  402. Pfaffinger PJ, Martin JM, Hunter DD, Nathanson NM, Hille B (1985) GTP-binding proteins couple cardiac muscarinic receptors to a K channel. Nature 317:536–538PubMedCrossRefGoogle Scholar
  403. Plaster NM, Tawil R, Tristani-Firouzi M, Canun S, Bendahhou S, Tsunoda A, Donaldson MR, Iannaccone ST, Brunt E, Barohn R, Clark J, Deymeer F, George Jr AL, Fish FA, Hahn A, Nitu A, Ozdemir C, Serdaroglu P, Subramony SH, Wolfe G, Fu YH, Ptacek LJ (2001). Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen's syndrome. Cell 105:511–519.PubMedCrossRefGoogle Scholar
  404. Posner BA, Mukhopadhyay, S, Tesmer JJ, Gilman AG, Ross EM (1999) Modulation of the affinity and selectivity of RGS protein interaction with Gα subunits by a conserved aspargine/serine residue. Biochemistry 38:7773–7779.PubMedCrossRefGoogle Scholar
  405. Prior HM, Webster N, Quinn K, Beech DJ, Yates MS (1998). K+-induced dilation of a small renal artery: no role for inward rectifier K+ channels. Cardiovascular Research 37:780–790.PubMedCrossRefGoogle Scholar
  406. Pronin AN, Gautam N (1992) Interaction between G-protein β and γ subunit types is selective. Proceedings of the National Academy of Sciences USA 89:6220–6224CrossRefGoogle Scholar
  407. Qu Z, Yang Z, Cui N, Zhu G, Liu C, Xu H, Chanchevalap S, Shen W, Wu J, Li Y, Jiang C (2000) Gating of inward rectifier K+ channels by proton-mediated interactions of N-and C-terminal domains. Journal of Biological Chemistry 275:31573–31580.PubMedCrossRefGoogle Scholar
  408. Qu Z, Zhu G, Yang Z, Cui N, Li Y, Chanchevalap S, Sulaiman S, Haynie H, Jiang C (1999) Identification of a critical motif responsible for gating of Kir2.3 channel by intracellular protons. Journal of Biological Chemistry 274:13783–13789.PubMedCrossRefGoogle Scholar
  409. Quayle JM, Dart C, Standen NB (1996) The properties and distribution of inward rectifier potassium currents in pig coronary arterial smooth muscle. Journal of Physiology 494: 715–726.PubMedGoogle Scholar
  410. Raab-Graham KF, Radeke CM, Vandenberg CA (1994) Molecular cloning and expression of a human heart inward rectifier potassium channel. Neuroreport 5:2501–2501.PubMedCrossRefGoogle Scholar
  411. Raab-Graham KF, Vandenberg CA (1998) Tetrameric subunit structure of the native brain inwardly rectifying potassium channel K(ir)2.2. Journal of Biological Chemistry 273:19699–19707.PubMedCrossRefGoogle Scholar
  412. Rakowski RF, Gadsby DC, De Weer P (1989) Stoichiometry and voltage dependence of the sodium pump in voltage-clamped, internally dialyzed squid giant axon. Journal of General Physiology 93:903–941PubMedCrossRefGoogle Scholar
  413. Rang HP, Ritchie JM (1968) On the electrogenic sodium pump in mammalian nonmyelinated nerve fibres and its activation by various external cations. Journal of Physiology 196:183–221.PubMedGoogle Scholar
  414. Rettig J, Heinemann SH, Wunder F, Lorra C, Parcej DN, Dolly JO, Pongs O (1994) Inactivation properties of voltage gated K+ channels altered by the presence of a β subunit. Nature 369:289–294.PubMedCrossRefGoogle Scholar
  415. Reuveny E, Jan YN, Jan LY (1996) Contributions of a negatively charged residue in the hydrophobic domain of the IRK1 inwardly rectifying K+ channel to K+-selective permeation. Biophysical Journal 70:754–761.PubMedCrossRefGoogle Scholar
  416. Reuveny E, Slesinger PA, Inglese J, Morales JM, Iñiguez-Lluhi JA, Lefkowitz RJ, Bourne HR, Jan YN, Jan LY (1994) Activation of the cloned muscarinic potassium channel by G protein βγ subunits. Nature 370:143–146PubMedCrossRefGoogle Scholar
  417. Rohács T, Chen J, Prestwich GD, Logothetis DE (1999) Distinct specificities of inwardly rectifying K+ channels for phosphoinositides. Journal of Biological Chemistry 274:36065–36072PubMedCrossRefGoogle Scholar
  418. Ross, E.M. and Wilkie, T.M. (2000) GTPase-activating proteins for heterotrimeric G proteins: regulators of G protein signaling (RGS) and RGS-like proteins. Annual Reviews of Biochemistery 69:795–827.CrossRefGoogle Scholar
  419. Roy ML, Sontheimer H (1995) β-Adrenergic modulation of glial inwardly rectifying potassium channels. Journal of Neurochemistery 64:1576–1584CrossRefGoogle Scholar
  420. Roychowdhury S, Rasenick MM (1997) G protein β1γ2 subunits promote microtubule assmebly. Journal of Biological Chemistery 272:31576–31581CrossRefGoogle Scholar
  421. Roychowdhury S, Wang N, Rasenick M (1993) G protein binding and G protein activation by nucleotide transfer involve distinct domains on tubulin: regulation of signal transduction by cytokeletal elements. Biochemistry 32:4955–4961PubMedCrossRefGoogle Scholar
  422. Ruppersberg JP, Fakler B (1996) Complexity of the regulation of K(ir)2.1 K+ channels. Neuropharmacology 35:887–893.PubMedCrossRefGoogle Scholar
  423. Sabirov RZ, Okada Y, Oiki S (1997a). Two-sided action of protons on an inward rectifier K+ channel (IRK1). Pflügers Archiv 433:428–434.PubMedCrossRefGoogle Scholar
  424. Sabirov RZ, Tominaga T, Miwa A, Okada Y, Oiki S (1997b). A conserved arginine residue in the pore region of an inward rectifier K channel (IRK1) as an external barrier for cationic blockers. Journal of General Physiology 110:665–677.PubMedCrossRefGoogle Scholar
  425. Sadja R, Smadja K, Alagem N, Reuveny E (2001) Coupling Gβγ-dependent activation to channel opening via pore elements in inwardly rectifying potassium channels. Neuron 29: 669–680.PubMedCrossRefGoogle Scholar
  426. Saitoh O, Kubo Y, Miyatani Y, Asano T, Nakata H (1997) RGS8 accelerates G-protein-mediated modulation of K+ currents. Nature 390:525–529PubMedCrossRefGoogle Scholar
  427. Sakmann B, Noma A, Trautwein W (1983) Acetylcholine activation of single muscarinic K+ channels in isolated pacemaker cells of the mammalian heart. Nature 303:250–253PubMedCrossRefGoogle Scholar
  428. Sakmann B, Patlak J, Neher E (1980) Single acetylcholine-activated channels show burst-kinetics in presence of desensitizing concentrations of agonist. Nature 286:71–73.PubMedCrossRefGoogle Scholar
  429. Schmidt CJ, Thomas TC, Levine MA, Neer EJ (1992) Specificity of G protein β and γ subunit interactions. Journal of Biological Chemistery 267:13807–13810Google Scholar
  430. Schreibmayer W, Dessauer CW, Vorobiov D, Gilman AG, Lester HA, Davidson N, Dascal N (1996) Inhibition of an inwardly rectifying K+ channel by G-protein α-subunits. Nature 380:624–627PubMedCrossRefGoogle Scholar
  431. Schulte U, Hahn H, Konrad M, Jeck N, Derst C, Wild K, Weidemann S, Ruppersberg JP, Fakler B, Ludwig J (199) pH gating of ROMK (K(ir)1.1.) channels: control by an Arg-Lys-Arg triad disrupted in Bartter syndrome. Proceedings of the National Academy of Sciences USA 96: 15298–15303.CrossRefGoogle Scholar
  432. Schulte U, Weidemann S, Ludwig J, ruppersberg JP, Fakler B (2001). K+-dependent gating of Kir2.1 channels is linked to pH gating through a conformational change in the pore. Journal of Physiology 534:59–70.CrossRefGoogle Scholar
  433. Sharon D, Vorobiov D, Dascal N (1997) Positive and negative coupling of the metabotropic glutamate receptors to a G protein-activated K+ channel, GIRK, in Xenopus oocytes. Journal of General Physiology 109:477–490PubMedCrossRefGoogle Scholar
  434. Shelton PA, Davies NW, Conley EC, Sutcliffe MJ & Stanfield PR (1995). Effects of N-and C-terminal deletions from the murine inward rectifier potassium channel IRK1. Japanese Journal of Physiology 45 (Suppl 2): S110.Google Scholar
  435. Shieh R-C (2000) Mechanisms for the time-dependent decay of inward currents through cloned Kir2,1 channels expressed in Xenopus ococytes. Journal of Physiology 526:241–252.PubMedCrossRefGoogle Scholar
  436. Shieh R-C, Chang J-C, Arreola J (1998) Interaction of Ba2+ with the pores of the cloned inward rectifier K+ channels Kir2.1 expressed in Xenopus oocytes. Biophysical Journal 75:2313–2322.PubMedGoogle Scholar
  437. Shieh R-C, Chang J-C, Kuo C-C (1999) K+ binding sites and interactions between permeating K+ ions at the external pore mouth of an inward rectifier K+ channel (Kir2.1). Journal of Biological Chemistry 274:17424–17430.PubMedCrossRefGoogle Scholar
  438. Shieh R-C, John SA, Lee J-K, Weiss JN (1996) Inward rectification of the IRK1 channel expressed in Xenopus oocytes: Effects of intracellular pH reveal an intrinsic gating mechanism. Journal of Physiology 494:363–376.PubMedGoogle Scholar
  439. Shieh R-C, Lee J-K (2001) Ammonium ions induce inactivation of Kir2.1 potassium channels expressed in Xenopus oocytes. Journal of Physiology 535:359–370.PubMedCrossRefGoogle Scholar
  440. Shin KS, Park JY, Kwon H, Chung CH, Kang MS (1997) A possible role of inwardly rectifying K+ channels in chick myoblast differentiation. American Journal of Physiology 272:C894–900.PubMedGoogle Scholar
  441. Shuck ME, Bock JH, Benjamin CW, Tsai TD, Lee KS, Slightom JL, Bienkowski MJ (1994a) Cloning and characterization of multiple forms of the human kidney ROM-K potassium channel. Journal of Biological Chemistery 269:24261–24270Google Scholar
  442. Shuck ME, Piser TM, Bock JH, Slightom JL, Lee KS, Bienkowski MJ (1994b) Cloning and characterization of two K+ inward rectifier (K(ir) 1.1) potassium channel homologs from human kidney (K(ir) 1.2 and K(ir) 1.3) Journal of Biological Chemistry 272:586–593.Google Scholar
  443. Shyng S-L, Barbieri A, Gumusboga A, Cukras C, Pike L, Davis JN, Stahl PD, Nichols CG (2000) Modulation of nucleotide sensitivity of ATP-sensitive potassium channels by phosphatidylinositol-4-phosphate 5-kinase. Proceedings of the National Academy of Sciences USA 97:937–941.CrossRefGoogle Scholar
  444. Shyng S-L, Nichols CG (1997). Octameric stoichiometry of the K(ATP) channel complex. Journal of General Physiology 110:655–664.PubMedCrossRefGoogle Scholar
  445. Shyng S-L, Nichols CG (1998) Membrane phospholipid control of nucleotide sensitivity of KATP channels. Science 282:1138–1144PubMedCrossRefGoogle Scholar
  446. Shyng S-L, Sha Q, Ferrigni T, Lopatin AN & Nichols CG (1996). Depletion of intracellular polyamines relieves inward rectification of potassium channels. Proceedings of the National Academy of Sciences USA 93:12014–12019.CrossRefGoogle Scholar
  447. Sigworth FJ (1985) Open channel noise. I. Noise in acetylcholine receptor currents suggests conformational fluctuation. Biophysical Journal 47:709–720.PubMedGoogle Scholar
  448. Silver MR, DeCoursey TE (1990). Intrinsic gating of inward rectifier in bovine pulmonary artery endothelial cells in the presence or absence of internal Mg2+. Journal of General Physiology 96:109–133.PubMedCrossRefGoogle Scholar
  449. Silverman SK, Lester HA, Dougherty DA (1996) Subunit stoichiometry of a heteromultimeric G protein-coupled inward-rectifier K+ channel. Journal of Biological Chemistery 271:30524–30528CrossRefGoogle Scholar
  450. Silverman SK, Lester HA, Dougherty DA (1998). Asymmetrical contributions of subunit pore regions to ion selectivity in an inward rectifier K+ channel. Biophysical Journal 75: 1330–1339.PubMedCrossRefGoogle Scholar
  451. Simonds WF, Butrynski JE, Gautam N, Unson CG, Spiegel AM (1991) G-protein βγ dimers. Journal of Biological Chemistery 266:5363–5366Google Scholar
  452. Sine SM, Claudio T, Sigworth FJ (1990) Activation of Torpedo acetylcholine receptors expressed in mouse fibroblasts. Journal of General Physiology 96:395–437PubMedCrossRefGoogle Scholar
  453. Sine SM, Steinbach JH (1984) Activation of a nicotinic acetylcholine receptor. Biophysical Journal 45:175–85PubMedGoogle Scholar
  454. Slesinger P, Patil N, Liao YJ, Jan YN, Jan LY, Cox DR (1996). Functional effects of the mouse weaver mutation on G-protein-gated inwardly rectifying K+ channels. Neuron 16, 321–331.PubMedCrossRefGoogle Scholar
  455. Slesinger PA, Reuveny E, Jan YN, Jan LY (1995) Identification of structural elements involved in G protein gating of the GIRK1 potassium channel. Neuron 15:1145–1156PubMedCrossRefGoogle Scholar
  456. Snow, B.E., Betts, L., Mangion, J., Sondek, J., and Siderovski, D.P. (1999) Fidelity of G protein β-subunit association by the G protein γ-subunit-like domains of RGS6, RGS7, and RGS11. Proceedings of the National Academy of Sciences USA 96: 6489–6494.CrossRefGoogle Scholar
  457. Snow, B.E., Krumins, A.M., Brothers, G.M., Lee, S.-F., Wall, M.A., Chung, S., Mangion, J., Arya, S., Gilman, A.G., and Siderovski, D.P. (1998) A G protein γ subunit-like domain shared between RGS11 and other RGS proteins specifies binding to Gβ5 subunits. Proceedings of the National Academy of Sciences USA 95: 13307–13312.CrossRefGoogle Scholar
  458. So I, Ashmole I, Davies NW, Sutcliffe MJ, Stanfield PR (2001). The K+ channel signature sequence of murine Kir2.1: mutations that affect microscopic gating but not ionic selectivity. Journal of Physiology 531:37–50.PubMedCrossRefGoogle Scholar
  459. Sodickson DL, Bean BP (1996) GABAB receptor-activated inwardly rectifying potassium current in dissociated hippocampal CA3 neurons. Journal of Neuroscience 16:6374–6385.PubMedGoogle Scholar
  460. Soejima M, Noma A (1984) Mode of regulation of the ACh-sensitive K-channel by the muscarinic receptor in rabbit atrial cells. Pflügers Archiv 400:424–431PubMedCrossRefGoogle Scholar
  461. Sokolova O, Kolmakova-Partensky L, Grigorieff N (2001): Three-dimensional structure of a voltage-gated potassium channel at 2.5nm resolution. Structure 9: 215–220.PubMedCrossRefGoogle Scholar
  462. Sondek J, Bohm A, Lambright DG, Hamm HE, Sigler PB (1996) Crystal structure of a GA protein βγ dimer at 2.1A resolution. Nature 379:369–374PubMedCrossRefGoogle Scholar
  463. Soom M, Schonherr R, Kubo Y, Kirsch C, Klinger R, Heinemann SH (2001). Multiple PIP2 binding sites in Kir2.1 inwardly rectifying potassium channels. FEBS Letters 490:49–53.PubMedCrossRefGoogle Scholar
  464. Sorota S, Tsuji Y, Tajima T, Pappano AJ (1985) Pertussis toxin treatment blocks hyperpolarization by muscarinic agonists in chick atrium. Circulation Research 57:748–758PubMedGoogle Scholar
  465. Spalding BC, Senyk O, Swift JG, Horowicz P (1981). Unidirectional flux ratio for potassium ions in depolarized frog skeletal muscle. American Journal of Physiology 10: C68–C75.Google Scholar
  466. Spassova M, Lu Z (1998). Coupled ion movement underlies rectification in an inward-rectifier K+ channel. Journal of General Physiology 112:211–221.PubMedCrossRefGoogle Scholar
  467. Spauschus A, Lentes K-U, Wischmeyer E, Dibmann E, Karschin C, Karschin A (1996) A G-protein-activated inwardly rectifying K+ channel (GIRK4) from human hippocampus associates with other GIRK channels. Journal of Neuroscience 16:930–938PubMedGoogle Scholar
  468. Stampe P, Arreola J, Perez-Cornejo P, Begenisich T (1998). Non independent K+ movement throught the pore in IRK1 potassium channels. Journal of General Physiology 112:475–484.PubMedCrossRefGoogle Scholar
  469. Stampe P, Begenisich T (1996). Unidirectional K+ fluxes through recombinant Shaker potassium channels expressed in single Xenopus oocytes. Journal of General Physiology 107:449–457.PubMedCrossRefGoogle Scholar
  470. Standen NB, Stanfield PR (1978a). A potential-and time-dependent blockade of inward rectification in frog skeletal muscle fibres by barium and strontium ions. Journal of Physiology 280:169–191.PubMedGoogle Scholar
  471. Standen NB, Stanfield PR (1978b). Inward rectification in skeletal muscle: a blocking particle model. Pflügers Archiv 378:173–176.PubMedCrossRefGoogle Scholar
  472. Standen NB, Stanfield PR (1979). Potassium depletion and sodium block of potassium currents under hyperpolarization in frog sartorius. Journal of Physiology 294: 497–520.PubMedGoogle Scholar
  473. Standen NB, Stanfield PR (1980). Rubidium block and rubidium permeability of the inward rectifier of frog skeletal muscle fibres. Journal of Physiology 304:415–435.PubMedGoogle Scholar
  474. Stanfield PR, Ashcroft FM, Plant TD (1981). Gating of a muscle potassium channel and its dependence on the permeating ion species. Nature 289:509–510.PubMedCrossRefGoogle Scholar
  475. Stanfield PR, Davies NW, Shelton PA Khan IA, Brammar WJ, Standen NB, Conley EC (1994a) The intrinsic gating of inward rectifier K+ channels expressed from the murine IRK1 gene depends on voltage, K+ and Mg2+. Journal of Physiology 475: 1–7.PubMedGoogle Scholar
  476. Stanfield PR, Davies NW, Shelton PA Sutcliffe MJ Khan IA, Brammar WJ, Conley EC (1994b) A single aspartate residue is involved in both intrinsic gating and blockage by Mg2+ of the inward rectifier, IRK1. Journal of Physiology 478:1–6.PubMedGoogle Scholar
  477. Stanfield PR, Nakajima Y, Yamaguchi K (1985) Substance P raises neuronal membrane excitability by reducing inward rectification. Nature 315:498–501PubMedCrossRefGoogle Scholar
  478. Stevens EB, Shah BS, Pinnock RD, Lee K (1999) Bombesin receptors inhibit G protein-coupled inwardly rectifying K+ channels expressed in Xenopus oocytes through a protein kinase C-dependent pathway. Molecular Pharmacology 55:1020–1027.PubMedGoogle Scholar
  479. Stockklausner, C, Ludwig J, Ruppersberg JP, Klöcker N (2001). A sequence motif responsible for ER export and surface expression of Kir2.0 inward rectifier K+ channels. FEBS Letters 493:129–133.PubMedCrossRefGoogle Scholar
  480. Stonehouse AH, Pringle JH, Norman RI, Stanfield PR, Conley EC, Brammar WJ (1999). Characterisation of Kir2.0 proteins in the rat cerebellum and hippocampus by polyclonal antibodies. Histochemistry & Cell Biology 112:457–465.CrossRefGoogle Scholar
  481. Sui JL, Chan KW, Logothetis DE (1996) Na+ activation of the muscarinic K+ channel by a G-protein-independent mechanism. J Gen Physiol 108:381–391PubMedCrossRefGoogle Scholar
  482. Sui JL, Petit-Jacues J, Logothetis DE (1998) Activation of the atrial KACh channel by the βγ subunits of G proteins or intracellular Na+ ions depends on the presence of phophatidylinositol phosphates. Proceedings of the National Academy of Sciences USA 95:1307–1312.CrossRefGoogle Scholar
  483. Surprenant A, North RA (1988) Mechanism of synaptic inhibition by noradrenaline acting at α2-adrenoceptors. Proceedings of the Royal Society B234:85–114CrossRefGoogle Scholar
  484. Sutton KG, Dolphin AC, Scott RH (1993) Inhibition of voltage-activated Ca2+ currents from cultured sensory neurones by spermine, argiotoxin-636 and a synthetic arginine polyamine. Molecular Neuropharmacology 3:37–43.Google Scholar
  485. Taglialatela M, Ficker E, Wible BA, Brown AM (1995) C-terminus determinants for Mg2+ and polyamine block of the inward rectifier K+ channel IRK1. EMBO Journal 14:5532–5541.PubMedGoogle Scholar
  486. Taglialatela M, Wible BA, Caporaso R, Brown AM (1994) Specification of pore properties by the carboxyl terminus of inwardly rectifying K+ channels. Science 264:844–847PubMedCrossRefGoogle Scholar
  487. Takahashi N, Morishige K-I, Jahangir A, Yamada M, Findlay I, Koyama H, Kurachi Y (1994) Molecular cloning and functional expression of cDNA encoding a second class of inward rectifier potassium channels in the mouse brain. Journal of Biological Chemistry 269:23274–23279.PubMedGoogle Scholar
  488. Takano K, Asano S, Yamashita N (1994) Activation of G protein-coupled K+ channels by dopamine in human GH-producing cells. American Journal of Physiology 266:E318–E325PubMedGoogle Scholar
  489. Takano K, Stanfield PR, Nakajima S, Nakajima Y (1995) Protein kinase C-mediated inhibition of an inward rectifier potassium channel by substance P in nucleus basalis neurons. Neuron 14:999–1008PubMedCrossRefGoogle Scholar
  490. Takano K, Yasufuku-Takano J, Kozasa T, Nakajima S, Nakajima Y (1997) Different G proteins mediate somatostatin-induced inward rectifier K+ currents in murine brain and endocrine cells. Journal of Physiology 502:559–567PubMedCrossRefGoogle Scholar
  491. Takano K, Yasufuku-Takano J, Kozasa T, Singer WD, Nakajima S, Nakajima Y (1996) Gq/11 and PLC-β1 mediate substance P-induced inhibition of an inward rectifier K+ channel in brain neurons. Journal of Neurophysiology 76:2131–2136PubMedGoogle Scholar
  492. Takao K, Yoshii M, Kanda A, Kokubun S, Nukada T (1994) A region of the muscarinic-gated atrial K+ channel critical for activation by G protein βγ subunits. Neuron 13:747–755PubMedCrossRefGoogle Scholar
  493. Takumi T, Ishii T, Horio Y, Morishige K-I, Takahashi N, Yamada M, Yamashita T, Kiyama H, Sohmiya K, Nakahishi S, Kurachi Y (1995) A novel ATP-dependent inward rectifier potassium channels expressed predominantly in glial cells. Journal of Biological Chemistry 270:16339–16346.PubMedCrossRefGoogle Scholar
  494. Tang W, Yang X-C. (1994). Cloning a novel human brain inward rectifier potassium channel and its functional expression in Xenopus oocytes. FEBS Letters 348:239–243PubMedCrossRefGoogle Scholar
  495. Tempel BL, Papazian DM, Schwarz TL, Jan YN, Jan LY (1987) Sequence of a probable potassium channel component encoded at shaker locus of drosophila. Science 237:770–775PubMedCrossRefGoogle Scholar
  496. Thomas RC (1972) Electrogenic sodium pump in nerve and muscel cells. Physiological Reviews 52:563–594PubMedGoogle Scholar
  497. Thompson GA, Leyland MJ, Ashmole I, Sutcliffe MJ, Stanfield PR (2000). Residues beyond the selectivity filter of the K+ channel Kir2.1 regulate permeation and block by external Rb+ and Cs+. Journal of Physiology 526:231–240.PubMedCrossRefGoogle Scholar
  498. Tinker A, Jan YN, Jan, LY (1996). Regions responsible for the assembly of inwardly rectifying potassium channels. Cell 87:857–868.PubMedCrossRefGoogle Scholar
  499. Tong Y, Brandt GS, Li M, Shapovalov G, Slimko E, Karschin A, Dougherty DA, Lester HA (2001) Tyrosine decaging leads to substantial membrane trafficking during modulation of an inward rectifier potassium channel. Journal of General Physiology 117:103–118.PubMedCrossRefGoogle Scholar
  500. Töpert C, Döring F, Wischmeyer E, Karschin C, Brockhaus J, Ballanyi K, Derst C, Karschin A (1998). Kir2.4: A novel K+ inward rectifier channel associated with motoneurons of cranial nerve nuclei. Journal of Neuroscience 18:4096–4105.PubMedGoogle Scholar
  501. Trautwein W, Dudel J (1958) Zum Mechanismus der Membranwirkung des Acetylcholin an der Herzmuskelfaser. Pflügers Archiv 266:324–334PubMedCrossRefGoogle Scholar
  502. Trussell LO, Jackson MB (1985) Adenosine-activated potassium conductance in cultured striatal neurons. Proceedings of the National Academy of Sciences USA 82:4857–4861CrossRefGoogle Scholar
  503. Trussell LO, Jackson MB (1987) Dependence of an adenosine-activated potassium current on a GTP-binding protein in mammalian central neurons. Journal of Neuroscience 7:3306–3316PubMedGoogle Scholar
  504. Tsaur M-L, Menzel S, Lai F-P, Espinosa III R, Concannon P, Spielman RS, Hanis CL, Cox NJ, Le Beau MM, German MS, Jan LY, Bell GI, Stoffel M (1995) Isolation of a cDNA clone encoding a K(ATP) channel-like protein expressed in insulin-secreting cells, localization of the human gene to chromosome band 21q22.1, and linkage studies with NIDDM. Diabetes 44:592–596.PubMedCrossRefGoogle Scholar
  505. Tucker SJ, Gribble FM, Proks P, Trapp S, Ryder TJ, Haug T, Reimann F, Ashcroft FM (1998) Molecular determinants of KATP channel inhibition by ATP. EMBO Journal 17:3290–3296.PubMedCrossRefGoogle Scholar
  506. Tucker SJ, Pessia M, Adelman JP (1996) Muscarine-gated K+ channel: subunit stoichiometry and structural domains essential for G protein stimulation. American Journal of Physiology 271:H379–H385PubMedGoogle Scholar
  507. Uchimura N, North RA (1990) Muscarine reduces inwardly rectifying potassium conductance in rat nucleus accumbens neurones. Journal of Physiology 422:369–380PubMedGoogle Scholar
  508. Vandenberg CA (1987) Inward rectification of a potassium channel in cardiac ventricular cells depends on internal magnesium ions. Proceedings of the National Academy USA 84:2560–2564.CrossRefGoogle Scholar
  509. Velimirovic BM, Gordon EA, Lim NF, Navarro B, Clapham DE (1996) The K+ channel inward rectifier subunits form a channel similar to neuronal G protein-gated K+ channel. FEBS Letters 379:31–37PubMedCrossRefGoogle Scholar
  510. Velimirovic B, Koyano K, Nakajima S, and Nakajima, Y. (1991) Substance P, somatostatin and met-enkephalin regulate the same K-channel in cultured noradrenergic neurons from the locus coeruleus. Society for Neuroscience Abstracts, 17:1474.Google Scholar
  511. Velimirovic BM, Koyano K, Nakajima S, Nakajima Y (1995) Opposing mechanisms of regulation of a G-protein-coupled inward rectifier K+ channel in rat brain neurons. Proceedings of the National Academy of Sciences USA 92:1590–1594CrossRefGoogle Scholar
  512. Wall MA, Coleman DE, Lee E, Iñiguez-Lluhi JA, Posner BA, Gilman AG, Sprang SR (1995) The structure of the G protein heterotrimer Giα1β1Y2. Cell 83:1047–1058PubMedCrossRefGoogle Scholar
  513. Wallinga W, Meijer SL, Alberink MJ, Vliek M, Wienk ED, Ypey DL (1999) Modelling action potentials and membrane currents of mammalian skeletal muscle fibres in coherence with potassium concentration changes in the T-tubular system. European Biophysics Journal 28:317–329.PubMedCrossRefGoogle Scholar
  514. Wang HS, McKinnon D (1996) Modulation of inwardly rectifying currents in rat sympathetic neurones by muscarinic receptors. Journal of Physiology 492.2:467–478Google Scholar
  515. Wang W, Giebisch G (1991) Dual modulation of renal ATP-sensitive K+ channel by protein kinases A and C. Proceedings of the National Academy of Sciences USA 88:9722–9725CrossRefGoogle Scholar
  516. Warmke JW, Ganetsky B (1994). A family of potassium channel genes related to eag in Drosophila and mammals. Proceedings of the National Academy USA 91: 3438–3442.CrossRefGoogle Scholar
  517. Watson S, Arkinstall S (1994) The G-protein linked receptor facts book Academic Press, London. 427pp.Google Scholar
  518. Wei J, Hodes ME, Piva R, Wang Y, Wang Y, Ghetti B, Dlouhy SR (1998). Characterization of murine Girk2 transcript isoforms: structure and differential expression. Genomics 51:379–390.PubMedCrossRefGoogle Scholar
  519. Weidmann S (1951). Effect of current flow on the membrane potential of cardiac muscle. Journal of Physiology 115:227–236.PubMedGoogle Scholar
  520. Weiger T, Hermann A (1994). Polyamines block Ca2+-activated K+ channels in pituitary tumor cells (GH3). Journal of Membrane Biology 140:133–142.PubMedGoogle Scholar
  521. Wells JA (1990). Additivity of mutational effects of proteins. Biochemistry 29: 8509–8517.PubMedCrossRefGoogle Scholar
  522. Wessel R, Kristan Jr WB, Kleinfeld D (1999). Supralinear summation of synaptic inputs by an invertegbrate neuron: dendritic gain is mediated by an ‘inward rectifier” K+ current. Journal of Neuroscience 19:5875–5888.PubMedGoogle Scholar
  523. Wible BA, Taglialatela M, Ficker E, Brown AM (1994). Gating of inwardly rectfying K+ channels localized to a single negatively charged residue. Nature 371:246–249.PubMedCrossRefGoogle Scholar
  524. Wickman K, Clapham DE (1995) Ion channel regulation by G proteins. Physiologycal Reviews 75:865–885Google Scholar
  525. Wickman KD, Iñiguez-Lluhi JA, Davenport PA, Taussig R, Krapivinsky GB, Linder ME, Gilman AG, Clapham DE (1994) Recombinant G-protein βγ-subunits activate the muscarinic-gated atrial potassium channel. Nature 368:255–257PubMedCrossRefGoogle Scholar
  526. Wickman K, Nemec J, Gendler SJ, Clapham DE (1998) Abnormal heart rate regulation in GIRK4 knockout mice. Neuron 20:103–114.PubMedCrossRefGoogle Scholar
  527. Williams JT, Colmers WF, Pan ZZ (1988a) Voltage-and ligand-activated inwardly rectifying currents in dorsal raphe neurons in vitro. Journal of Neuroscience 8:3499–3506PubMedGoogle Scholar
  528. Williams JT, Egan TM, North RA (1982) Enkephalin opens potassium channels on mammalian central neurones. Nature 299:74–77PubMedCrossRefGoogle Scholar
  529. Williams JT, North RA, Tokimasa T (1988b) Inward rectification of resting and opiateactivated potassium currents in rat locus coeruleus neurons. Journal of Neurosci ence 8:4299–4306Google Scholar
  530. Williams K (1997) Modulation and block of ion channels: a new biology of polyamines. Cellular Signalling 9:1–13.PubMedCrossRefGoogle Scholar
  531. Wilson GF, Chiu SY (1990) Ion channels in axon and Schwann cell membranes at paranodes of mammalian myelinated fibers studied with patch clamp. Journal of Neuroscience 10:3263–3274PubMedGoogle Scholar
  532. Wimpey TL, Chavkin C (1991) Opioids activate both an inward rectifier and a novel voltage-gated potassiu conductance in the hippocampal formation. Neuron 6:281–289PubMedCrossRefGoogle Scholar
  533. Wischmeyer E, Döring F, Karschin A (1998). Acute suppression of inwardly rectifying Kir2.1 channels by direct tyrosine kinase phosphorylation. Journal of Biological Chemistry 273:34063–34068.PubMedCrossRefGoogle Scholar
  534. Wischmeyer E, Döring F, Wischmeyer E, Spauschus A, Thomzig A, Veh R, Karschin A (1997) Subunit interactions in the assembly of neuronal Kir3.0 inwardly rectifying K+ channels. Molecular and Cellular Neuroscience 9:194–206.PubMedCrossRefGoogle Scholar
  535. Wischmeyer E, Karschin A (1996). Receptor stimulation causes slow inhibition of IRK1 inwardly rectifying K+ channels by direct protein kinase A-mediated phosphorylation. Proceedings of the National Academy of Sciences USA 93:5819–5823.CrossRefGoogle Scholar
  536. Womack KB, Gordon SE, He F, Wensel TG, Lu C-C, Hilgemann DW (2000). Do phosphatidylinositides modulate vertebrate phototransduction? Journal of Neuroscience 20:2792–2799.PubMedGoogle Scholar
  537. Wu D, Jiang H, Katz A, and Simon MI (1993) Identification of critical regions on phospholipase C-β1 required for activation of G-proteins. Journal of Biological Chemistry 268:3704–3709.PubMedGoogle Scholar
  538. Xie L-H, Horie M, Takano M (1999) Phospholipase C-linked receptors regulate the ATP-sensitive potassium channel by means of phosphatidylinositol 4, 5-bisphosphate metabolism. Proceedings of the National Academy of Sciences USA 96:15292–15297.CrossRefGoogle Scholar
  539. Yakubovich D, Pastushenko V, Bitler A, Dessauer CW, Dascal N (2000) Slow modal gating of single G protein-activated K+ channels expressed in Xenopus oocytes. Journal of Physiology 524:737–755.PubMedCrossRefGoogle Scholar
  540. Yamada M, Inanobe A, Kurachi Y (1998) G protein regulation of potassium ion channels. Pharmacological Reviews 50:723–757.PubMedGoogle Scholar
  541. Yamada M, Kurachi Y (1995) Spermine gates inward-rectifying muscarinic but not ATP-sensitive K+ channels in rabbit atrial myocytes. Journal of Biological Chemistry 270:9289–9294.PubMedCrossRefGoogle Scholar
  542. Yamashita N, Shibuya N, Ogata E (1988) Requirement of GTP on somatostatin-induced K+ current in human pituitary tumor cells. Proceedings of the National Academy of Sciences USA 85:4924–4928CrossRefGoogle Scholar
  543. Yang J, Jan YN, Jan LY (1995a). Control of rectification and permeation by residues in two distinct domains in an inward rectifier K+ channel. Neuron 14:1047–1054.PubMedCrossRefGoogle Scholar
  544. Yang J, Jan YN, Jan LY (1995b). Determination of the subunit stoichiometry of an inwardly rectifying potassium channel. Neuron 15:1441–1447.PubMedCrossRefGoogle Scholar
  545. Yang J, Yu M, Jan YM, Jan LY (1997). Stabilisation of ion selectivity filter by pore loop ion pairs in an inwardly rectifying potassium channel. Proceedings of the National Academy USA 94:1568–1572.CrossRefGoogle Scholar
  546. Yang Z, Xu H, Cui N, Qu Z, Chanchevalap S, Shen W, Jiang C (2000). Biophysical and molecular mechanisms underlying the modulation of heteromeric Kir4.1–Kir5.1 channels by CO2 and pH. Journal of General Physiology 116:33–45.PubMedCrossRefGoogle Scholar
  547. Yano H, Philipson LH, Kugler JL, Tokuyama Y, Davis EM, Le Beau MM, Nelson DJ, Bell GI, Takeda J (1994) Alternative splicing of human inwardly rectifying K+ channel ROMK1 mRNA. Molecular Pharmacology 45:854–860.PubMedGoogle Scholar
  548. Yasuda H, Lindorfer MA, Woodfork KA, Fletcher JE, Garrison JC (1996) Role of the prenyl group on the G protein γ subunit in coupling trimeric G proteins to A1 adenosine receptors. Journal of Biological Chemistry 271:18588–18595PubMedCrossRefGoogle Scholar
  549. Yatani A, Codina J, Brown AM, Birnbaumer L (1987) Direct activation of mammalian atrial muscarinic potassium channels by GTP regulatory protein GK. Science 235: 207–211.PubMedCrossRefGoogle Scholar
  550. Yi BA, Lin Y-F, Jan YN, Jan LY (2001). Yeast screen for constitutively active mutant G protein-activated potassium channels. Neuron 29:657–667.PubMedCrossRefGoogle Scholar
  551. Zaritsky JJ, Eckman DM, Wellman GC, Nelson MT, Schwarz TL (2000). Targeted disruption of Kir2.1 and Kir2.2 genes reveals the essential role of the inwardly rectifying K+ current in K+-mediated vasodilation. Circulation Research 87:160–166.PubMedGoogle Scholar
  552. Zaritsky JJ, Redell JB, Tempel BL, Schwarz TL (2001). The consequences of disrupting cardiac inwardly rectifying K+ current (I K1) as revealed by the targeted deletion of the murine Kir2.1 and Kir2.2 genes. Journal of Physiology 533:697–710.PubMedCrossRefGoogle Scholar
  553. Zerangue N, Schwappach B, Jan YN, Jan LY (1999). A new ER trafficking s signal regulates the subunit stoichiometry of plasma membrane KATP channels. Journal of Physiology 22:537–548.Google Scholar
  554. Zhainazarov AB, Ache BW (1999). Effects of phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 4-phosphate on a Na+-gated nonselective cation channel. Journal of Neuroscience 19:2929–2937.PubMedGoogle Scholar
  555. Zhang H, He C, Yan X, Mirshahi T, Logothetis DE (1999) Activation of inwardly rectifying K+ channels by distinct PtdIns(4,5)P2 interactions. Nature Cell Biology 1: 183–188PubMedCrossRefGoogle Scholar
  556. Zhang, J.H. and Simonds, W.F. (2000). Copurification of brain G-protein b5 with RGS6 and RGS7. Journal of Neuroscience 20:RC59, 1–5.Google Scholar
  557. Zhou H, Chepilko S, Schutt W, Choe H, Palmer LG, Sackin H (1996). Mutations in the pore region of ROMK enhance Ba2+ block. American Journal of Physiology 271: C1949–C1956.PubMedGoogle Scholar
  558. Zhou H, Tate SS, Palmer LG (1994) Primary structure and functional properties of an epithelial K channel. American Journal of Physiology 266:C809–C824PubMedGoogle Scholar
  559. Zhou M, Morais-Cabral JH, Mann S, MacKinnon R (2001). Potassium channel receptor site for the inactivation gate and quaternary amine inhibitors. Nature 411:657–661.PubMedCrossRefGoogle Scholar
  560. Zhu G, Chanchevalap S, Cui N, Jiang C (1999a). Effects of intra-and extracellular acidifications on single channel Kir2.3 currents. Journal of Physiology 516:699–710.PubMedCrossRefGoogle Scholar
  561. Zhu G, Liu C, Qu Z, Chanchevalap S, Xu H, Jiang C (2000). CO2 inhibits specific inward rectifier K+ channels by decreases in intra-and extracellular pH. Journal of Biological Chemistry 274:11643–11646.CrossRefGoogle Scholar
  562. Zhu G, Qu Z, Cui N, Jiang C (1999b). Suppression of Kir2.3 activity by protein kinase C phosphorylation of the channel protein at threonine 53. Journal of Biological Chemistry 274:11643–11646.PubMedCrossRefGoogle Scholar
  563. Zhu L, Wu X, Wu MB, Chan KW, Logothetis DE, Thornhill WB (2001). Cloning and characterization of G protein-gated inward rectifier K+ channel (GIRK1) isoforms from heart and brain. Journal of Molecular Neuroscience 16:21–32.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2002

Authors and Affiliations

  • Peter R. Stanfield
    • 1
  • Shigehiro Nakajima
    • 2
  • Yasuko Nakajima
    • 3
  1. 1.Molecular Physiology Group, Department of Biological SciencesUniversity of WarwickCoventryUK
  2. 2.Department of PharmacologyUniversity of Illinois at Chicago, College of MedicineChicagoUSA
  3. 3.Department of Anatomy and Cell BiologyUniversity of Illinois at Chicago, College of MedicineChicagoUSA

Personalised recommendations