Selenium-containing proteins in mammals and other forms of life

  • A. Kyriakopoulos
  • D. Behne
Part of the Reviews of Physiology, Biochemistry and Pharmacology book series (REVIEWS, volume 145)


Glutathione Peroxidase Selenium Deficiency Formate Dehydrogenase Iodothyronine Deiodinase Phospholipid Hydroperoxide Glutathione Peroxidase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akasaka M, Mizoguchi J, Takahashi K (1990) A human cDNA sequence for a novel glutathione peroxidase-related protein. Nucleic Acids Res 18:4619PubMedGoogle Scholar
  2. Andreesen JR, Ljungdahl LG (1973) Formate dehydrogenase of Clostridium thermoaceticum, incorporation of selenium-75, and the effects of selenite, molybdate, and tungstate on the enzyme. J Bacteriol 116:867–873PubMedGoogle Scholar
  3. Andreesen JR, Wagner M, Sonntag D, Kohlstock M, Harms C, Gursinsky T, Jäger J, Parther T, Kabisch U, Gräntzdörffer A, Pich A, Söhling B (1999) Various functions of selenols and thiols in anaerobic Gram-positive, amino acids-utilizing bacteria. Bio-Factors 10:263–370Google Scholar
  4. Arai M, Imai H, Sumi D, Imanaka T, Takano T, Chiba N, Nakagawa Y (1996) Import into mitochondria of phospholipid hydroperoxide glutathione peroxidase requires a leader sequence. Biochem Biophys Res Commun 227:433–439PubMedGoogle Scholar
  5. Arkowitz RA, Abeles RH (1989) Identification of acetyl phosphate as the product of clostridial glycine reductase: evidence for an acyl enzyme intermediate. Biochemistry 28:4639–4644Google Scholar
  6. Arkowith RA, Abeles RH (1990) Isolation and characterization of a covalent selenocysteine intermediate in the glycine reductase system. J Am Chem Soc 112: 870–872Google Scholar
  7. Arteel GE, Mostert V, Oubrahim H, Briviba K, Abel J, Sies H (1998) Protection by selenoprotein P in human plasma against peroxynitrite-mediated oxidation and nitration. Biol Chem 379:1201–1205PubMedGoogle Scholar
  8. Arthur JR, Nicol F, Beckett GJ (1990) Hepatic iodothyronine 5′-deiodinase. The role of selenium. Biochem J 272:537–540PubMedGoogle Scholar
  9. Avissar N, Ornt DB, Yagil Y, Horowitz S, Watkins RH, Kerl EA, Takahashi K, Palmer IS, Cohen HJ (1994) Human kidney proximal tubules are the main source of plasma glutathione peroxidase. Am J Physiol 266:C367–C375PubMedGoogle Scholar
  10. Axley MJ, Böck A, Stadtman TC (1991) Catalytic properties of an Escherichia coli formate dehydrogenase mutant in which sulfur replaces selenium. Proc Natl Acad Sci USA 88:8450–8454PubMedGoogle Scholar
  11. Bansal MP, Cook RG, Danielson KG, Medina D (1989) A 14 kilodalton selenium-binding protein in mouse liver is fatty acid-binding protein. J Biol Chem 264:13780–13784PubMedGoogle Scholar
  12. Bansal MP, Mukhopadhyay T, Scott J, Cook PG, Medina D (1990) DNA sequencing of a mouse liver protein that binds selenium: implications for selenium's mechanism of action in cancer prevention. Carcinogenesis 11:2071–2073PubMedGoogle Scholar
  13. Beck MA, Kolbeck PC, Shi Q, Rohr LH, Morris VC, Levander OA (1994) Increased virulence of a human enterovirus (coxsackievirus B3) in selenium-deficient mice. J Infect Dis 170:351–357PubMedGoogle Scholar
  14. Beck MA, Esworthy RS, Ho YS, Chu FF (1998) Glutathione peroxidase protects mice from viral-induced myocarditis. FASEB J 12:1143–1149PubMedGoogle Scholar
  15. Behne D, Höfer H, von Berswordt-Wallrabe R, Elger W (1982) Selenium in the testis of the rat: Studies on its regulation and its importance for the organism. J Nutr 112: 1682–1687PubMedGoogle Scholar
  16. Behne D, Wolters W (1983) Distribution of selenium and glutathione peroxidase in the rat. J Nutr 113:456–461PubMedGoogle Scholar
  17. Behne D, Höfer-Bosse T (1984) Effects of a low selenium status on the distribution and retention of selenium in the rat. J Nutr 114:1289–1296PubMedGoogle Scholar
  18. Behne D, Duk M, Elger W (1986) Selenium content and glutathione peroxidase activity in the testis of the maturing rat. J Nutr 116:1442–1447PubMedGoogle Scholar
  19. Behne D, Hilmert H, Scheid S, Gessner H, Elger W (1988) Evidence for specific selenium target tissues and new biologically important selenoproteins. Biochim Biophys Acta 966: 12–21PubMedGoogle Scholar
  20. Behne D, Kyriakopoulos A, Meinhold H, Köhrle J (1990a) Identification of type I iodothyronine 5′-deiodinase as a selenoenzyme. Biochem Biophys Res Commun 173: 1143–1149PubMedGoogle Scholar
  21. Behne D, Scheid S, Kyriakopoulos A, Hilmert H (1990b) Subcellular distribution of selenoproteins in the liver of the rat. Biochem Biophys Acta 1033:219–225PubMedGoogle Scholar
  22. Behne D, Kyriakopoulos A, Scheid S, Gessner H. (1991) Effects of chemical form and dosage on the incorporation of selenium into tissue proteins in rats. J Nutr 121: 806–814PubMedGoogle Scholar
  23. Behne D, Weiler H, Kyriakopoulos A (1996a) Effects of selenium deficiency on testicular morphology and function in rats. J Repr 106:291–297Google Scholar
  24. Behne D, Kyriakopoulos A, Weiss-Nowak C, Kalckösch M, Westphal C, Gessner H (1996b) Newly found selenium-containing proteins in the tissues of the rat. Biol Trace Elem Res 55:99–110PubMedGoogle Scholar
  25. Behne D, Kyriakopoulos A, Kalcklösch M, Weiss-Nowak C, Pfeifer H, Gessner H, Hammel C (1997) Two new selenoproteins found in the prostatic glandular epithelium and in the spermatid nuclei. Biomed Environm Sci 10:340–345Google Scholar
  26. Behne D, Pfeifer H, Röthlein D, Kyriakopoulos A (2000) Cellular and subcellular distribution of selenium and selenium-containing proteins in the rat. In: Roussel AM, Favier AE, Anderson RA (eds) Trace Elements in Man and Animals 10, Kluwer Academic/Plenum Publishers New York, pp 29–34Google Scholar
  27. Bermano G, Arthur JR, Hesketh JE (1996) Selective control of cytosolic glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase mRNA stability by selenium supply. FEBS Lett 387:157–160PubMedGoogle Scholar
  28. Berry MJ, Kieffer JD, Harney JW, Larsen PR (1991a) Selenocysteine confers the biochemical properties of the type I iodothyronine deiodinase. J Biol Chem 266:14155–14158PubMedGoogle Scholar
  29. Berry MJ, Banu L, Larsen PR (1991b) Type I iodothyronine deiodinase is a selenocysteine-containing enzyme. Nature 349:438–440PubMedGoogle Scholar
  30. Berry MJ, Banu L, Harney JW, Larsen PD (1993) Functional characterization of the eukaryotic SECIS elements which direct selenocysteine insertion at UGA codons. EMBO J 12:3315–3322PubMedGoogle Scholar
  31. Björnstedt M, Xue J, Huang W, Akesson B, Holmgren A (1994) The thioredoxin and glutaredoxin systems are efficient electron donors to human plasma glutathione peroxidase. J Biol Chem 269:29382–29384PubMedGoogle Scholar
  32. Böck A, Forschhammer K, Heider J, Leinfelder W, Sawers G, Veprek B, Zinoni F (1991a) Selenocysteine: the 21st amino acid. Mol Microbiol 5:515–520PubMedGoogle Scholar
  33. Böck A, Forchhammer K, Heider J, Baron C (1991b) Selenoprotein synthesis: an expansion of the genetic code. Trends Biochem Sci 16:463–467PubMedGoogle Scholar
  34. Bösl MR, Takaku K, Oshima M, Nishimura S, Taketo MM (1997) Early embryonic lethality caused by targeted disruption of the mouse selenocysteine tRNA gene (Trsp). Proc Natl Acad Sci USA 94:5531–5534PubMedGoogle Scholar
  35. Bottino NR, Banks CH, Irgolic KJ, Micks P, Wheeler AE, Zingaro RA (1984) Selenium-containing amino acids and proteins in marine algae. Phytochemistry 23: 2445–2452Google Scholar
  36. Boyington JC, Gladyshev VN, Khangulov SV, Stadtman TC, Sun PD (1997) Crystal structure of formtc dehydrogenase H: catalysis involving Mo, molybdopterin, selenocysteine, and an Fe4S4 cluster. Science 275:1305–1308PubMedGoogle Scholar
  37. Broderick SJ, Deagen JT, Whanger PD (1987) Properties of the glutathione peroxidase isolated from human plasma. J Inorg Biochem 30: 758–761Google Scholar
  38. Brown TA, Shrift A (1982) Selenium: toxicity and tolerance in higher plants. Biol Rev 57:59–84Google Scholar
  39. Broyer TC, Lee DC, Asher CJ (1966) Selenium nutrition of green plants. Effect of selenite supply on growth and selenium content of alfalfa and subterranean clover. Plant Physiol 41: 1425–1428PubMedGoogle Scholar
  40. Broyer TC, Johnson CM, Huston RP (1972) Selenium and nutrition of Astragalus. 1. Effect of selenite or selenate supply on growth and selenium content. Plant and Soil 36:635–649Google Scholar
  41. Burk RF (1973) Effect if dietary selenium on 75Se-binding, to rat plasma proteins. Proc. Soc. Exp. Biol. Med. 143: 719–722PubMedGoogle Scholar
  42. Burk RF, Hill KE, Award JA, Morrow JD, Cockell KA, Lyons PR (1995) Pathogenesis of diquat-induced liver necrosis in selenium-deficient rats. Assessment of the roles of lipid peroxidation by measurement of F2 isoprostanes. Hepatology 21:561–569PubMedGoogle Scholar
  43. Butler JA, Beilstein MA, Whanger PD (1989) Influence of dietary methionine on the metabolism, of selenomethionine in rats. J Nutr 119: 1001–1009PubMedGoogle Scholar
  44. Calvin HI, Cooper GW, Walolace E (1981) Evidence that selenium in rat sperm is associated with a cysteine-rich structural protein of the mitochondrial capsules. Gamete Res 4:139–149Google Scholar
  45. Calvin HI, Grosshans K, Musicant-Shikora SR, Turner SI (1987) A developmental study of rat sperm and testis selenoproteins. J Repr Fertil 81:1–11Google Scholar
  46. Casalone E, di Ilio C, Federiei G, Polsinelli M (1988) Glutathione and glutathione metabolizing enzymes in yeasts. Antonie van Leeuwenhoek 54: 367–375PubMedGoogle Scholar
  47. Chambers I, Frampton J, Goldfarb P, Affara N, McBain W, Harrison P R (1986) The structure of the mouse glutathione peroxidase gene: the selenocysteine in the active site is encoded by the “termination codon”, TGA. EMBO J 5: 1221–1227PubMedGoogle Scholar
  48. Cheng WH, Ho Y-S, Valentine BA, Ross DA, Combs GF, Lei XG (1998) Cellular glutathione peroxidase is the mediator of body selenium to protect against paraquat lethality in transgenic mice. J Nutr 128: 1070–1076PubMedGoogle Scholar
  49. Christensen MJ, Burgener KW (1992) Dietary selenium stabilizes glutathione peroxidase mRNA in rat liver J Nutr 122: 1620–1626PubMedGoogle Scholar
  50. Chu FF, Esworthy RS, Doroshow JH, Doan K, Liu XF (1992) Expression of plasma glutathione peroxidase in human liver in addition to kidney, heart, lung, and breast in humans and rodents. Blood 79:3233–3238PubMedGoogle Scholar
  51. Chu FF, Doroshow JH, Esworthy RS (1993) Expression, characterization, and tissue distribution of a new cellular selenium-dependent glutathione peroxidase, GSHPx-GI. J Biol Chem 268: 2571–2576PubMedGoogle Scholar
  52. Chu FF, Esworthy RS, Ho YS, Swiderek K, Elliiot RW (1997) Expression and chromosomal mapping of mouse Gpx2 gene encoding the gastrointestinal form of glutatione peroxidase, GPX-GI. Biomed Environ Sci 10: 156–162PubMedGoogle Scholar
  53. Clark LC, Dalkin B, Krongrad A, Combs GF Jr, Turnbull BW, Slate EH, Witherington R, Herlong JH, Janosko E, Carpenter D, Borosso C, Falk S, Rounder J (1998) Decreased incidence of prostate cancer with selenium supplementation: results of a doubleblind cancer prevention trial. Br J Urol 81:730–734PubMedGoogle Scholar
  54. Combs GF Jr, Combs SB (1986a) The role of selenium in nutrition. Academic Press, Orlando Florida, 127–177.Google Scholar
  55. Combs GF Jr, Combs SB (1986b) The role of selenium in nutrition. Academic Press, Orlando Florida, pp. 265–399.Google Scholar
  56. Cone JE, Martin del Rio R, Davis JN, Stadtman TC (1976) Chemical characterization of the selenoprotein component of clostridial glycine reductase: identification of selenocysteine as the organoselenium moiety. Proc Natl Acad Sci USA 73: 2659–2663PubMedGoogle Scholar
  57. Copeland PR, Fletcher JE, Carlson BA, Hatfield DL, Driscoll DM (2000) A novel RNA binding protein, SPB2, is required for the translation of mammalian selenoprotein mRNAs. EMBO J 19: 306–314PubMedGoogle Scholar
  58. Cox JC, Edwards ES, DeMoss JA (1981) Resolution of distinct selenium-containing formate dehydrogenases from Escherichia coli. J Bacteriol 145: 1317–1324PubMedGoogle Scholar
  59. Croteau W, Whittemore SL, Schneider MJ, St Germain DL (1995) Cloning and expression of a CDNA for a mammalian type III iodothyronine deiodinase. J Biol Chem 270: 16569–16575PubMedGoogle Scholar
  60. Croteau W, Davey JC, Galton VA, St Germain DL (1996) Cloning of the mammalian type II iodothyronine deiodinase. J Clin Invest 98: 405–417PubMedGoogle Scholar
  61. Danielson KG, Medina D (1986) Distribution of selenoproteins in mouse mammary epithelial cells in vitro and in vivo. Cancer Res 46:4582–4589PubMedGoogle Scholar
  62. Davey JC, Becker KB, Schneider MJ, St. Germain DL, Galton VA (1995) Cloning of a cDNA for the type II iodothyronine deiodinase. J Biol Chem 270: 26786–26789PubMedGoogle Scholar
  63. Deagen JT, Butler JA, Beilstein MA, Whanger PD (1987) Effects of dietary selenite selenocystine and selenomethionine on selenocysteine lyase and glutathione peroxidase activities and on selenium levels in rat tissues. J Nutr 117: 91–98PubMedGoogle Scholar
  64. de Haan JB, Bladier C, Griffiths P, Kelner M, O'Shea RD, Cheung NS, Bronson RT, Silvestro MJ, Wild S, Zheng SS, Beart PM, Hertog PJ, Kola I (1998) Mice with a homozygous null mutation for the most abundant glutathione peroxidase, Gpx1, show increased susceptibility to the oxidative stress-inducing agents paraquat and hydrogen peroxide. J Biol Chem 273:22528–22536PubMedGoogle Scholar
  65. Dilworth GL (1982) Properties of the selenium-containing moiety of nicotinic acid hydroxylase from Clostridium barkeri. Arch Biochem Biophys 219: 30–38PubMedGoogle Scholar
  66. Dobbek H, Gremer L, Meyer O, Huber R, (1999) Crystal structure and mechanism of CO dehydrogenase, a molybdo iron-sulfur flavoprotein containing S-selanylcysteine. Proc Natl Acad Sci USA 96:8884–8889PubMedGoogle Scholar
  67. Doucette GJ, Price NM, Harrison PJ (1987) Effects of selenium deficiency on the morphology and ultrastructure of the coastal marine diatom Thalassiosira preudonana (Bacillariaphyceae) J Phycol 23: 9–17Google Scholar
  68. Drotar A, Phelps P, Fall R (1985) Evidence for glutathione peroxidase activities in cultured plant cells. Plant Sci 42: 35–40Google Scholar
  69. Dürre P, Andreesen JR (1983) Purine and glycine, metabolism by purinolytic clostridia. J Bacteriol 154: 192–199PubMedGoogle Scholar
  70. Easwari K and Lalitha K (1995) Subcellular distribution of selenium during uptake and its influence on mitochondrial oxidations in germinating Vigna radiata L. Biol Trace Elem Research 48: 141–160Google Scholar
  71. Eidsness MK, Scott RA, Prickril BC, Der Vartanian DV, Legall J, Moura I, Moura JJG, Peck HD Jr (1989) Evidence for selenocysteine coordination to the active site nickel in the (NiFeSe) hydrogenases from Desulfovibrio baculatus. Proc Natl Acad Sci USA 86: 147–151PubMedGoogle Scholar
  72. Enoch HG, Lester RL (1975) The purification and properties of formate dehydrogenase and nitrate reductase from Escherichia coli J Biol Chem 250: 6693–6705PubMedGoogle Scholar
  73. Esworthy RS, Swiderek KM, Ho YS, Chu FF (1998) Selenium-dependent glutathione peroxidase-GI is a major glutathione peroxidase activity in the mucosal epithelium of rodent intestine. Biochem Biophys Acta 1381: 213–226PubMedGoogle Scholar
  74. Evenson JK, Sunde RA (1988) Selenium incorporation into selenoproteins in the Seadequate and Se-deficient rat. Proc Soc Exp Biol Med 187: 169–180PubMedGoogle Scholar
  75. Fauque G, Peck HD Jr, Moura JJ, Huynh BH, Berlier Y, DerVartanian DV, Teixeira M, Przybyla AE, Lespinat PA, Moura I, LeGall J (1988) The three classes of hydrogenases from sulfate-reducing bacteria of the genus Desulfibria. FEMS Microbiol Rev 54: 299–344Google Scholar
  76. Flohé L, Günzler WA, Schock HH (1973) Glutathione peroxidase: a selenoenzyme. FEBS Letters 32: 132–134PubMedGoogle Scholar
  77. Forchhammer K, Böck A (1991) Selenocysteine synthase, from Escherichia coli. Analysis of the reaction sequence. J Biol Chem 266: 6324–2628PubMedGoogle Scholar
  78. Forstrom JW, Zakowski JJ, Tappel AL (1978) Identification of the catalytic site of rat liver glutathione peroxidase as selenocysteine. Biochemistry 17: 2639–2644PubMedGoogle Scholar
  79. Franke K W, Potter W R (1935) A new toxicant occurring naturally in certain samples of plant foodstuffs. IX. Toxic effects of orally ingested selenium. J Nutr 10: 213–222Google Scholar
  80. Galiazzo F, Schiesser A, Rotilio G (1987) Glutathione peroxidase in yeast. Presence of the enzyme and induction by oxidative conditions. Biochem Biophys Res Commun 147: 1200–1205PubMedGoogle Scholar
  81. Garcia E, Vernede X, Hatchikian EC, Volbeda A, Frey M, Fontecilla-Camps JC (1999) The crystal structure of a reduced [NiFeSe] hydrogenase provides an image of the activated catalytic center. Structure Fold Des 7: 557–566Google Scholar
  82. Gasdaska PY, Gasdaska JR, Cochran S, Powis G (1995) Cloning and sequencing of a human thioredoxin reductase. FEBS Lett 373: 5–9PubMedGoogle Scholar
  83. Gasdaska JR, Harney JW, Gasdaska PY, Powis G, Berry MJ (1999a) Regulation of human thioredoxin reductase expression and activity by 3′-untranslated region selenocysteine insertion sequence and mRNA instability elements. J Biol Chem 274: 25379–25385PubMedGoogle Scholar
  84. Gasdaska PY, Berggren MM, Berry ML, Powis G (1999b) Cloning, sequencing and functional expression of a novel human thioredoxin reductase. FEBS Lett 442: 105–111PubMedGoogle Scholar
  85. Gladyshev VN, Khangulov SV, Stadtman TC (1996a) Properties of the selenium-and molyb-denum-containing nicotinic acid hydroxylase from Clostridium barkeri. Biochemistry 35: 212–223PubMedGoogle Scholar
  86. Gladyshev VN, Jeang KT Stadtman TC (1996b) Selenocysteine, identified as the penultimate C-terminal residue in human T-cell thioredoxin reductase, corresponds to TGA in the human placental gene. Proc Natl Acad Sci USA 93: 6146–6151PubMedGoogle Scholar
  87. Gladyshev VN, Jeang KT, Wootton JC, Hatfield DL (1998) A new human selenium-containing protein. Purification, characterization, and cDNA sequence. J Biol Chem 273: 8910–8915PubMedGoogle Scholar
  88. Gladyshev VN, Krause M, Xu XM, Korotkov KV, Kryukov GV, Sun QA, Lee BJ, Wootton JC, Hatfield DL (1999) Selenocysteine-containing thioredoxin reductase in C.elegans. Biochem Biophys Res Commun 259: 244–249PubMedGoogle Scholar
  89. Grahame DA (1988) A summary of new findings in research on hydrogenase. BioFactors 1: 279–283PubMedGoogle Scholar
  90. Gromer S, Wissing J, Behne D, Ashman K, Schirmer H, Flohé L, Becker K (1998) A hypothesis on the catalytic mechanism of the selenoenzyme thoredoxin reductase. Biochem J 332: 591–592PubMedGoogle Scholar
  91. Gu QP, Beilstein MA, Barofsky E, Ream W, Whanger PD (1999) Purification, characterization and glutathione binding to selenoprotein W from monkey muscle. Arch Biochem Biophys 361: 25–33PubMedGoogle Scholar
  92. Günzler WA, Steffens GJ, Grossmann A, Kim SMA, Ötting F, Wendel A, Flohé L (1984) The amino-acid sequence of bovine glutathione peroxidase. Hoppe-Seyler's Z Physiol Chem 365: 195–212PubMedGoogle Scholar
  93. Guimaraes MJ, Peterson D, Vicari A, Cocks BG, Copeland NG, Gilbert DJ, Jenkins, NA, Ferrick DA, Kastelein RA, Bazan JF, Zlotnik A (1996) Identification of a novel selD homolog from eukaryotes, bacteria and archaea: is there an autoregulatory mechanism in selenocysteine metabolism? Proc Natl Acad Sci USA 93: 15086–15091PubMedGoogle Scholar
  94. Haas HJ, Velten M (1992) Selenoproteins in mitochondria and cytosol of Saccharomyces uvarum after growth in sodium selenite-supplemented media. J Trace Elem Electrolytes Health Dis 6: 71–74PubMedGoogle Scholar
  95. Halboth S, Klein A (1992) Methanococcus voltae harbors four gene clusters potentially encoding two (NiFe) and two (NiFeSe) hydrogenases, each of the cofactor F420-reducing or F42-non-reducing types. Mol Gen Genet 233: 217–224PubMedGoogle Scholar
  96. Hammel C, Kyriakopoulos A, Behne D, Gawlik D Brätter P (1996) Protein-bound selenium in the seeds of coco de mono (Lecythis ollaria). J Trace Elem Med Biol 10: 96–102PubMedGoogle Scholar
  97. Harrison PJ, Yu PW, Thompson PA, Price NM, Phillips DJ (1988) Survey of selenium requirements in marine phytoplankton. Mar Ecol Prog Ser 47: 89–96Google Scholar
  98. Hatfield DL, Lee BJ, Price NM, Stadtman TC (1991) Selenocysteyl-tRNA occurs in the diatom Thalassiosira and in the ciliate Tetrahymena. Mol Microbiol 5: 1183–1186PubMedGoogle Scholar
  99. Hatfield D, Choi IS, Mischke S, Owens LD (1992) Selenocysteyl-tRNAs recognize UGA in Beta vulgaris, a higher plant, and in Gliocladium virens, a filamentous fungus. Biochem Biophys Res Commun 184: 254–259PubMedGoogle Scholar
  100. Hawkes WC, Wilhelmsen EC, Tappel A (1985) Abundance and tissue distribution of selenocysteine-containing proteins in the rat. J Nutr 113: 456–461Google Scholar
  101. Heider J, Forchhammer K, Sawers G, Böck A (1991) Interspecies compatibility of selenoprotein biosynthesis in Enterobacteriaceae. Arch Microbiol 155: 221–228PubMedGoogle Scholar
  102. Heider J, Baron C, Böck A (1992) Coding from a distance: dissection of the mRNA determinants required for the incorporation of selenocysteine into protein. EMBO J 11: 3759–3766PubMedGoogle Scholar
  103. Herrman JL (1977) The properties of a rat serum protein labelled by the injection of sodium selenite. Biochim Biophys Acta 500: 61–70PubMedGoogle Scholar
  104. Hill KE, Lloyd RS, Yang JG, Read R, Burk RF (1991) The cDNA for rat selenoprotein P contains 10 TGA codons in the open reading frame. J Biol Chem 266: 10050–10053PubMedGoogle Scholar
  105. Ho Y-S, Magnenat J-L, Bronson RT, Cao J, Gargano M, Sugawara M, Funck CD (1997) Mice deficient in cellular glutathione peroxidase develop normally and show no increase sensitivity to hyperoxia. J Biol Chem 272: 16644–16651PubMedGoogle Scholar
  106. Holmgren A, Björnstedt M (1995) Thioredoxin and thioredoxin reductase. Methods Enzymol. 252 B: 199–208Google Scholar
  107. Huber RE, Criddle RS (1967) Comparison of chemical properties of selenocysteine and selenocystine with their sulfur analogs. Arch Biochem Biophys 122: 164–173PubMedGoogle Scholar
  108. Imhoff D, Andreesen JR (1979) Nicotinic acid hydroxylase from Clostridium barkeri: selenium-dependent formation of active enzyme. FEMS Microbiol Lett 5: 155–158Google Scholar
  109. Jones JB, Dilworth GL, Stadtman TC (1979) Occurrence of selenocysteine in the selenium-dependent formate dehydrogenase of Methanococcus vanniellii. Arch Biochem Biophys 195: 255–260PubMedGoogle Scholar
  110. Jones JB, Stadtman TC (1981) Selenium-dependent and selenium-independent formate dehydrogenases of Methanococcus vannielli. J Biol Chem 256: 656–663PubMedGoogle Scholar
  111. Kabisch UC, Gräntzdörffer A, Schierhorn A, Rücknagel KP, Andreesen JR, Pich A (1999) Identification of D-proline reductase from Clostridium sticklandii as a selenoenzyme and indications for a catalytically active pyruvoyl group derived from a cysteine residue by cleavage of a proprotein. J Biol Chem 274: 8445–8454PubMedGoogle Scholar
  112. Kalcklösch M, Kyriakopoulos A, Hammel C, Behne D (1995) A new selenoprotein found in the glandular epithelial cells of the rat prostate. Biochem Biophys Res Commun 217: 162–70PubMedGoogle Scholar
  113. Kaplan MM (1986) Regulatory influences on iodothyronine deiodination in animal tissues. In: Hennemann G (ed) Thyroid Hormone Metabolism, Marcel Dekker New York, pp 231–253Google Scholar
  114. Keshan Disease Research Group (1979) Observations on effect of sodium selenite in prevention of Keshan disease. Chinese Med J 92: 471–476Google Scholar
  115. Kopf A, Brätter P, Gramm HJ (1990) Spurenelementkonzentrationen bei langzeitparenteraler Ernährung unter besonderer Berücksichtigung des Selenmetabolismus. Anaesthesist 39:633–634Google Scholar
  116. Korhola M, Vainio A, Edelmann K (1986) Selenium yeast. Ann Clin Res 18: 65–68PubMedGoogle Scholar
  117. Kreimer S, Andreesen JR (1995) Glycine reductase of Clostridium litorale. Cloning, sequencing and molecular analysis of the grdAB operon that contains two in-frame TGA codons for selenium incorporation. Eur J Biochem 234: 192–199PubMedGoogle Scholar
  118. Kryukov GV, Kryukov VM, Gladyshev VN (1999) New mammalian selenocysteine-containing proteins identified with an algorithm that searches for selenocysteine insertion sequence elements. J Biol Chem 274: 33888–33897PubMedGoogle Scholar
  119. Kryukov GV, Gladyshev VN (2000) Selenium metabolism in zebrafish: multiplicity of selenoprotein genes and expression of a protein containing 17 selenocysteine residues. Genes Cells 5: 1049–1060PubMedGoogle Scholar
  120. Kumaraswamy E, Malykh A, Korotkov KV, Kozyavkin S, Hu Y, Kwon SY, Moustafa ME, Carlson BA, Berry MJ, Lee BJ, Hatfield DL, Diamond AM, Gladyshev VN (2000) Structure-expression relationships of the 15-kDa selenoprotein gene. Possible role of the protein in cancer etiology. J Biol Chem 275: 35540–35547PubMedGoogle Scholar
  121. Kyriakopoulos A, Kalcklösch M, Weiß-Nowak C, Behne D (1993) Studies on 16 kDa selenium-containing proteins enriched by means of preparative electrophoresis. Electrophoresis 14: 108–111PubMedGoogle Scholar
  122. Kyriakopoulos A, Hammel C, Gessner H, Behne D (1996) Characterization of an 18 kDa-selenium-containing protein in several tissues of the rat. Am Biotech Lab 14: 22Google Scholar
  123. Kyriakopoulos A, Pfeifer H, Hammel C, Röthlein D, Geßner H, Behne D (1997) Investigation of nuclear selenium-containing proteins in the kidney of the rat. In: Anke M et al. (eds) Mengen-und Spurenelemente, 17. Arbeitstagung, Verlag Schubert H, Leipzig, pp 438–446Google Scholar
  124. Kyriakopoulos A, Röthlein D, Pfeifer H, Geßner H, Behne D (1998) Selenium-containing compounds in baker's yeast (Saccharomyces cerevisiae). In: Anke M, Meißner D (eds) Mengen-und Spurenelemente, 18. Arbeitstagung, Verlag Schubert H, Leipzig, pp 740–745Google Scholar
  125. Kyriakopoulos A, Röthlein D, Pfeifer H, Geßner H, Behne D (1999) Distribution of an 18 kDa-selenoprotein in the mitochondrial membranes in several tissues of the rat. In: Anke M et al. (eds) Mengen-und Spurenelemente, 19. Arbeitstagung, Verlag Schubert H, Leipzig, pp 292–301Google Scholar
  126. Kyriakopoulos A, Röthlein D, Pfeifer H, Bertelsmann H, Kappler S, Behne D (2000) Detection of small selenium-containing proteins in tissues of the rat. J Trace Elements Med Biol 14: 170–183Google Scholar
  127. Kyriakopoulos A, Bertelsmann H, Kappler S, Behne D (2001) Investigation of membrane-bound selenium-containing proteins in cell compartments of several tissues of the rat. In: Anke M, Müller R, Schäfer U (eds) Mineralstoffe. Mengen-, Spuren-und Ultraspurenelemente in der Prävention. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 374–380Google Scholar
  128. Kyriakopoulos A, Bertelsmann H, Graebert A, Hoppe B, Kühbacher M, Behne D (2002) Distribution of an 18 kDa selenoprotein in several tissues of the rat. J Trace Elements Med Biol 16: 57–67Google Scholar
  129. Lacourciere GM (1999) Biosynthesis of selenophosphate. BioFactors 10: 237–244PubMedGoogle Scholar
  130. Lee BJ, Worland PJ, Davis JN, Stadtman TC, Hatfield DL (1989) Identification of a selenocysteyl tRNASer in mammalian cells that recognizes the nonsense codon UGA. J Biol Chem 264: 9724–9727PubMedGoogle Scholar
  131. Lee SR, Kim JR, Kwon KS, Yoon HW, Levine RL, Ginsburg A, Rhee SG (1999) Molecular cloning and characterization of a mitochondrial selenocysteine-containing thioredoxin reductase from rat liver. J Biol Chem 274: 4722–4734PubMedGoogle Scholar
  132. Lee SR, Bar-Noy S, Kwon J, Levine RL, Stadtman TC, Rhee SG (2000) Mammalian thioredoxin reductase: Oxidation of the C-terminal cysteine/selenocysteine active site forms a thioselenide, and replacement of selenium with sulfur markedly reduces catalytic activity. Proc Natl Acad Sci USA 97: 2521–2526PubMedGoogle Scholar
  133. Leinfelder W, Zehelein E, Mandrand-Berthelot MA, Böck A (1988) Gene for a novel tRNA species that accepts L-serine and cotranslationally inserts selenocysteine. Nature 331: 723–725PubMedGoogle Scholar
  134. Leinfelder W, Forchhammer K, Veprek B, Zehelein E, Böck A (1990) In vitro synthesis of selenocysteyl-tRNAUCA from seryl-tRNAUCA: involvement and characterization of the SelD gene product. Proc Natl Acad Sci USA 87: 543–547PubMedGoogle Scholar
  135. Leonard DM, Stachelek SJ, Safran M, Farwell AP, Kowalik TF, Leonard JL (2000) Cloning, expression, and functional characterization of the substrate binding subunit of rat type II iodothyronine 5′-deiodinase J Biol Chem 275: 25194–25201PubMedGoogle Scholar
  136. Leonhardt U, Andreesen JR (1977) Some properties of formate dehydrogenase, accumulation and incorporation of 185W-tungstein into proteins of Clostridium formicoacetum. Arch Microbiol 115: 277–284PubMedGoogle Scholar
  137. Lescure A, Gautheret D, Carbon P, Krol A (1999) Novel selenoproteins identified in silico and in vivo by using a conserved RNA structural motif. J Biol Chem 274: 38147–38154PubMedGoogle Scholar
  138. Li CZ, Huang JR, Li CX (1986) Sodium selenite as a preventive measure for Kaschin-Beck disease as evaluated in X-ray studies. In: Combs GF Jr, Spallholz JE, Levander OA, Oldfield JE (eds) Selenium in Biology and Medicine, AVI Press New York, pp 934–937Google Scholar
  139. Low SC, Harney JW, Berry MJ (1995) Cloning and functional characterization of human selenophosphate synthetase, an essential component of selenoprotein synthesis. J Biol Chem 270: 21659–21664PubMedGoogle Scholar
  140. Low SC, Berry MJ (1996) Knowing when not to stop: Selenocysteine incorporation in eukaryotes. Trends Biochem Sci 21: 203–208PubMedGoogle Scholar
  141. Maddipati KR, Marnett IJ (1987) Characterization of the major hydroperoxide reducing activity of human plasma. J Biol Chem 262: 17398–17403PubMedGoogle Scholar
  142. Maiorino M, Wissing JB, Brigelius-Flohé R, Calabrese F, Roveri A, Steinert P, Ursini F, Flohé L (1998) Testosterone mediates expression of the selenoprotein PHGPx by induction of spermatogenesis and not by direct transcriptional gene activation. FASEB J 12: 1359–1370PubMedGoogle Scholar
  143. Martin-Romero FJ, Kryukov GV, Lobanov AV, Carlson BA, Lee BJ, Gladyshev VN, Hatfield DL (2001) Selenium metabolism in Drosophila: selenoproteins, selenoprotein mRNA expression, fertility, and mortality (2001) J Biol Chem 276: 29798–29804PubMedGoogle Scholar
  144. Matsui M, Oshima M, Oshima H, Takaku K, Maruyama T, Jodoi J, Taketo MM (1996) Early embryonic lethality caused by targeted disruption of the mouse thioredoxin gene. Dev Biol 178: 179–185PubMedGoogle Scholar
  145. McCoy KEM and Weswig PH (1969) Some selenium response in the rat not related to vitamin E. J Nutr 98: 383–389PubMedGoogle Scholar
  146. Meyer M, Granderath K, Andreesen JR (1995) Purification and characterization of protein PB of betaine reductase and its relationship to the corresponding proteins glycine reductase and sarcosine reductase from Eubacterium adidaminophilum. Eur J Biochem 234: 184–191PubMedGoogle Scholar
  147. Millar KR (1972) Distribution of 75Se in liver, kidney, and blood proteins of rats after intravenous injection of sodium selenite. NZJ Agr Res 15: 547–564Google Scholar
  148. Mills GC (1957) Hemoglobin catabolism. I. Glutathione peroxidase, an erythrocyte enzyme which protects hemoglobin from oxidative breakdown. J Biol Chem 229: 189–197PubMedGoogle Scholar
  149. Miranda-Vizuete A, Damdimopoulos AE, Pedrajas JR, Gustafsson JA, Spyrou G (1999) Human mitochondrial thioredoxin reductase. Eur J Biochem 261: 405–412PubMedGoogle Scholar
  150. Mortimer RH, Galligan JP, Cannell GR, Addison RS, Roberts MS (1996) Maternal to fetal thyroxine transmission in the human term placenta is limited by inner ring deiodination. J Clin Endocrinol Metab 81: 2247–2249PubMedGoogle Scholar
  151. Motsenbocker MA, Tappel AL (1982) A selenocysteine-containing selenium-transport protein in rat plasma. Biochim Biophys Acta 719: 147–153PubMedGoogle Scholar
  152. Mustacich D, Powis G (2000) Thioredoxin reductase. Biochem J 346: 1–8PubMedGoogle Scholar
  153. Muth E, Morschel E, Klein A (1987) Purification and characterization of an 8-hydroxy-5-deazaflavin-reducing hydrogenase from the archaebacterium Methanococcus voltae. Eur J Biochem 169: 571–577PubMedGoogle Scholar
  154. Neuhierl B, Böck A (1996) On the mechanism of selenium tolerance in selenium-accumulating plants. Purification and characterization of a specific selenocysteine methyltransferase from cultured cells of Astragalus bisculatus. Eur J Biochem 239: 235–238PubMedGoogle Scholar
  155. Patterson E L, Milstrey R, Stokstad E L R (1957) Effect of selenium in preventing exudative diathesis in chicks. Proc Soc Exp Biol Med 95: 617–620PubMedGoogle Scholar
  156. Peck HD, Gest H (1957) Formic dehydrogenase and the hydrogenlyase enzyme complex in coli-aerogenes bacteria. J Bacteriol 73: 706–721PubMedGoogle Scholar
  157. Peterson PJ, Butler GW (1962) The uptake and assimilation of selenite by higher plants. Aust J Biol Sci 15: 126–146Google Scholar
  158. Pinsent J (1954) The need for selenite and molybdate in the formation of formic dehydrogenase by members of the Coli-aerogenes group of bacteria. Biochem J 57: 10–16PubMedGoogle Scholar
  159. Pfeifer H, Conrad M, Roethlein D, Kyriakopoulos A, Brielmeier M, Bornkamm GW, Behne D (2001) Identification of a specific sperm nuclei selenoenzyme necessary for protamine thiol cross-linking during sperm maturation. FASEB J 15: 1236–1238PubMedGoogle Scholar
  160. Price NM, Thompson PA, Harrison PJ (1987) Selenium: an essential element for growth of the coastal marine diatom Thalassiosira pseudonana (Bacillariophyceae). J Phycol 23: 1–9Google Scholar
  161. Price NM, Harrison PJ (1988) Specific selenium-containing macromolecules in the marine diatom Thalassiosira pseudonana. Plant Physiol 86: 192–199PubMedGoogle Scholar
  162. Pushpa-Rekha TR, Burdsall AL, Oleksa LM, Chisolm GM, Driscoll DM (1995) Rat phospholipid-hydroperoxide glutathione peroxidase. cDNA cloning and identification of multiple transcription and translation start sites. J Biol Chem 270: 26993–26999PubMedGoogle Scholar
  163. Read R, Bellow T, Yang J-G, Hill KE, Palmer IS, Burk RF (1990) Selenium and composition of selenoprotein P, the major selenoprotein in rat serum. J Biol Chem 265: 17899–17905PubMedGoogle Scholar
  164. Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179: 588–590PubMedGoogle Scholar
  165. Roveri A, Casaco A, Maiorino M, Dalan P, Calligaro A, Ursini F (1992) Phopholipid hydroperoxide glutathione peroxidase of rat testis: gonadotropin dependency and immunocytochemical identification. J Biol Chem 267: 6142–6146PubMedGoogle Scholar
  166. Roveri A, Maiorino M, Ursini F (1994) Enzymatic and immunological measurements of soluble and membrane-bound PHGPx. Methods Enzymol 233: 202–212PubMedGoogle Scholar
  167. Saijoh K, Saito N, Lee MJ, Fujii M, Kobayashi T, Sumino K (1995) Molecular cloning of cDNA encoding a bovine selenoprotein P-like protein containing 12 selenocysteines and a (His-Pro) rich domain insertion, and its regional expression. Mol Brain Res 30: 301–311PubMedGoogle Scholar
  168. Salbe AD, Levander OA (1990) Effect of various dietary factors on the deposition of selenium in the hair and nails of rats. J Nutr 120: 200–206PubMedGoogle Scholar
  169. Salvatore D, Bartha T, Harney JW, Larsen PR (1996) Molecular biological and biochemical characterization of the human type 2 selenodeiodinase. Endocrinology 137: 3308–3315PubMedGoogle Scholar
  170. Sani BP, Woodard JL, Pierson MC, Allen RD (1988) Specific binding proteins for selenium in rat tissues. Carcinogenesis 9: 277–84PubMedGoogle Scholar
  171. Sathe SK, Mason AC, Weaver CM (1992a) Some properties of a selenium-incorporating sulfur-rich protein in soybeans (Glycine max L.). J Agric Food Chem 40: 2077–2083Google Scholar
  172. Sawers G, Heider J, Zehelein E, Böck A (1991) Expression and operon structure of the sel genes of Escherichia coli and identification of a third selenium-containing formate dehydrogenase isoenzyme. J Bacteriol 173: 4983–4993PubMedGoogle Scholar
  173. Schräder T, Rienhofer A, Andreesen JR (1999) Selenium-containing xanthine dehydrogenase from Eubacterium barkeri. Eur J Biochem 264: 862–871PubMedGoogle Scholar
  174. Schwarz K, Foltz C M (1957) Selenium as an integral part of factor 3 against dietary necrotic liver degeneration. J Am Chem Soc 79: 3292–3293Google Scholar
  175. Self WT, Stadtman TC (2000) Selenium-dependent metabolism of purines: A selenium-dependent purine hydroxylase and xanthine dehydrogenase were purified from Clostridium purinolyticum and characterized. Proc Natl Acad Sci USA 97: 7208–7213PubMedGoogle Scholar
  176. Shigeoka S, Takeda T, Hanaoka T (1991) Characterization and immunological properties of selenium-containing glutathione peroxidase induced by selenite in Chlamydomonas reinhardtii. Biochem J 275: 623–625PubMedGoogle Scholar
  177. Soehling B, Parther T, Ruecknagel KP, Wagner M, Andreesen JR (2001) A selenocysteine-containing peroxiredoxin from the strictly anaerobic organism Eubacterium acidaminophilum. Biol Chem 282 (in press)Google Scholar
  178. Sorgenfrei O, Duin EC, Klein A, Albracht SP (1997) Changes in the electronic structure around Ni in oxidized and reduced selenium-containing hydrogenases from Methanococcus voltae. Eur J Biochem 247: 681–687PubMedGoogle Scholar
  179. Sorgenfrei O, Linder D, Karas M, Klein A (1993) A novel very small subunit of a selenium containing [NiFe] hydrogenase of Methanococcus voltae is posttranslationally processed by cleavage at a defined position. Eur J Biochem 213: 1355–1358PubMedGoogle Scholar
  180. Sun QA, Wu Y, Zappacosta F, Jeang KT, Lee BJ, Hatfield DL, Gladyshev VN (1999) Redox regulation of cell signaling by selenocysteine in mammalian thioredoxin reductases. J Biol Chem 274: 24522–24530PubMedGoogle Scholar
  181. Sun QA, Zappacosta F, Factor VM, Wirth PJ, Hatfield DL, Gladyshev VN (2001) Heterogeneity within animal thioredoxin reductases: evidence for alternative first exon splicing. J Biol Chem 276: 3106–3114PubMedGoogle Scholar
  182. Sun Y, Ha PC, Butler JA, Ou BR, Yeh JY, Whanger P (1998) Effect of dietary selenium on selenoprotein W and glutathione peroxidase in 28 tissues of the rat. J Nutr Biochem 9: 23–27.Google Scholar
  183. Sun Y, Gu QP, Whanger PD (2001) Selenoprotein W in overexpressed and underexpressed rat glial cells in culture. J Inorg Biochem 84: 151–156PubMedGoogle Scholar
  184. Sunde RA, Evenson JK (1987) Serine incorporation into the selenocysteine moiety of glutathione peroxidase. J Biol Chem 262: 933–937PubMedGoogle Scholar
  185. Sunde RA, Thompson RM, Palm MD, Weiss SL, Thompson KM, Evenson JK (1997) Selenium regulation of selenium-dependent glutathione peroxidases in animals and transfected CHO cells. Biomed Environ Sci 10: 346–355PubMedGoogle Scholar
  186. Takahashi K, Avissar N, Whitin J, Cohen H (1987) Purification and characterization of human plasma glutathione peroxidase: a selenoglycoprotein distinct from the known cellular enzyme. Arch Biochem Biophys 256:677–686PubMedGoogle Scholar
  187. Tamura T, Stadtman TC (1996) A new selenoprotein from human lung adenocarcinoma cells: Purification, properties, and thioredoxin reductase activity. Proc Natl Acad Sci USA 93: 1006–1011PubMedGoogle Scholar
  188. Tanaka H, Stadtman TC (1979) Selenium-dependent clostridial glycine reductase. Purification and characterization of the two membrane-associated protein components. J Biol Chem 254: 447–452PubMedGoogle Scholar
  189. Teixeira M, Fauque G, Moura I, Lespinat PA, Berlier Y, Prickril B, Prickril B, Peck HD Jr, Xavier AV, LeGall J, Moura JJG (1997) Nickel-(iron-sulfur)-selenium containing hydrogenases from Desulfovibrio baculatus (DSM 1743) Eur J Biochem 167: 47–58Google Scholar
  190. Thomas JP, Maiorino M, Ursini F, Girotti AW (1990) Protective action of phospholipid hydroperoxide glutathione peroxidase against membrane-damaging lipid peroxidation. In situ reduction of phospholipid and cholesterol hydroperoxides. J Biol Chem 265:454–461PubMedGoogle Scholar
  191. Trelease SF, Trelease HM (1939) Physiological differentiation in Astragalus with reference to selenium. Amer J Bot 26: 530–535Google Scholar
  192. Tujebajeva RM, Copeland PR, Xu XM, Carlson BA, Harney JW, Driscoll DM, Hatfield DL, Berry MJ (2000) Decoding apparatus for eukaryotic selenocysteine insertion EMBO Reports 1: 158–163PubMedGoogle Scholar
  193. Turner DC, Stadtman TC (1973) Purification of protein components of the clostridial glycine reductase system and characterisation of protein A as a selenoprotein. Arch Biochem Biophys 154:366–381PubMedGoogle Scholar
  194. Ursini F, Maiorino M, Valente M, Ferri L, Gregolin C (1982) Purification from pig liver of a protein which protects liposomes and biomembranes from peroxidative degradation and exhibits glutathione peroxidase activity on phopatidylcoline hydroperoxides. Biochim Biophys Acta 710: 197–211PubMedGoogle Scholar
  195. Ursini F, Maiorino M, Gregolin C (1985) The selenoenzyme phospholipid hydroperoxide glutathione peroxidase. Biochim Biophys Acta 839:62–70PubMedGoogle Scholar
  196. Ursini F, Heim S, Kiess M, Maiorino M, Roveri A, Wissing J, Flohé L (1999) Dual function of the selenoprotein PHGPx during sperm maturation. Science 285: 1393–1396PubMedGoogle Scholar
  197. Vendeland SC, Beilstein MA, Chen CL, Jensen ON, Barofsky E, Whanger PD (1993) Purification and properties of selenoprotein-W from rat muscle. J Biol Chem 268: 17103–17107PubMedGoogle Scholar
  198. Vendeland SC, Beilstein MA, Yeh JY, Ream W, Whanger PD (1995) Rat skeletal muscle selenoprotein W: cDNA clone and mRNA modulation by dietary selenium. Proc Natl. Acad Sci USA 92: 8749–8753PubMedGoogle Scholar
  199. Veres Z, Tsai L, Scholz TD, Politino M, Balaban, RS, Stadtman TC (1992) Synthesis of 5-methylaminomethyl-2-selenouridine in tRNAs: 31P NMR studies show the labile selenium donor synthesized by the selD gene product contains selenium bonded to phosphorus. Proc Natl Acad Sci USA 89: 2975–2979PubMedGoogle Scholar
  200. Veres Z, Kim IY, Scholz TD, Stadtman TC (1994) Selenophosphate synthetase. Enzyme properties and catalytic reaction. J Biol Chem 269: 10597–10603PubMedGoogle Scholar
  201. Volk DM, Cutliff SA (1986) Selenium deficiency and cardiomyopathy in a patient with cystic fibrosis. J Ky Med Assoc 84: 222–224PubMedGoogle Scholar
  202. Voordouw G, Menon NK, LeGall J, Choi ES, Peck HD Jr, Przybyla AE (1989) Analysis and comparison for (NiFe) and (NiFeSe) hydrogenases from Desulfovibrio gigas and Desulfovibrio baculatus. J Bacteriol 171: 2894–2899PubMedGoogle Scholar
  203. Vorholt JA, Vaupel M, Thauer RK (1997) A selenium-dependent and a selenium-independent formylmethanofuran dehydrogenase and their transcriptional regulation in the hyperthermophilic Methanopyrus kandleri. Mol Microbiol 23: 1033–1042PubMedGoogle Scholar
  204. Wagner R, Andreesen JR (1977) Differentiation between Clostridium acidiurici and Clostridium cylindrosporum on the basis of specific metal requirements for formate dehydrogenase formation. Arch Microbiol 114: 219–224PubMedGoogle Scholar
  205. Wagner R, Andreesen JR (1979) Selenium requirement for active xanthine dehydrogenase from Clostridium acidiurici and Clostridium cylindrosporum. Arch Microbiol 121:255–260PubMedGoogle Scholar
  206. Wagner M, Sonntag D, Grimm R, Pick A, Eckerskorn C, Söhling B, Andreesen JR (1999) Substrate-specific selenoprotein B of glycine reductase from Eubacterium acidaminophilum. Biochemical and molecular analysis. Eur J Biochem 260; 38–49PubMedGoogle Scholar
  207. Waschulewski IH, Sunde RA (1988) Effect of dietary methionine on tissue selenium and glutathione peroxidase (EC activity in rats given selenomethionine. Br J Nutr 60: 57–68PubMedGoogle Scholar
  208. Watabe S, Makino Y, Ogawa K, Hiroi T, Yamamoto Y, Takahashi SY (1999) Mitochondrial thioredoxin reductase in bovine adrenal cortex. Its purification, nucleotide/amino acid sequence, and identification of selenocysteine. Eur J Biochem 264: 74–84PubMedGoogle Scholar
  209. Wendel A, Kerner B, Graupe A (1978) The selenium moiety of glutathione peroxidase. Hoppe-Seyler's Z physiol Chem 359: 1035–1036Google Scholar
  210. Whanger PD, Butler JA (1988) Effects of various dietary levels of selenium as selenite or selenomethionine on tissue selenium levels and glutathione peroxidase activity in rats. J Nutr 118: 846–852PubMedGoogle Scholar
  211. Wingler K, Böcher M, Flohé L, Kollmus H, Brigelius-Flohé R (1999) mRNA stability and SECIS efficiency rank gastrointestinal glutathione peroxidase high in the hierarchy of selenoproteins. Eur J Biochem 259: 149–157PubMedGoogle Scholar
  212. Wilting R, Schorling S, Persson BC, Böck A (1997) Selenoprotein synthesis in archaea: Identification of an mRNA element of methanococcus jannaschii probably directing selenocysteine insertion. J Mol Biol 266: 637–641PubMedGoogle Scholar
  213. Wu SH, Oldfield JE, Whanger PD, Weswig PH (1969) Effect of selenium on reproduction. Proc West Sec Am Soc Anim Sci 20: 85–89Google Scholar
  214. Yamada K, Nakagawa CW, Mutoh N (1999) Schizosaccharomyces pombe homologue of glutathione peroxidase, which does not contain selenocysteine, is induced by several stresses and works as an antioxidant. Yeast 15: 1125–1132PubMedGoogle Scholar
  215. Yamamoto I, Saiki T, Liu SM, Ljungdahl LG (1983) Purification and properties of NADP-dependent formate dehydrogenase from thermoaceticum Clostridium, a tungsten-selenium-iron protein. J Biolog Chem 258: 1826–1832Google Scholar
  216. Yamazaki S (1982) A selenium-containing hydrogenase from Methanocosus vannielii. J Biol Chem 257: 7926–7929PubMedGoogle Scholar
  217. Yamazaki S (1987) Properties of selenium-containing hydrogenase from Methanococcus vannielii. In: Combs GF Jr, Spallholz JE, Levander OA, Oldfield JE (eds) Selenium in Biology and Medicine, AVI Press New York, pp 230–235Google Scholar
  218. Yokota A, Shigeoka S, Onishi T, Kitaoka S (1988) Selenium as inducer of glutathione peroxidase in low-CO2-grown Chlamydomonas reinhardtii. Plant Physiol 86: 649–651PubMedGoogle Scholar
  219. Yoshimura S, Watanabe K, Suemizu H, Onozawa T, Mizoguchi J, Tsuda K, Katta H, Moriuchi T (1991) Tissue specific expression of the plasma glutathione peroxidase gene in rat kidney. J Biochem 109: 918–23PubMedGoogle Scholar
  220. Zinoni F, Birkmann A, Stadtman TC, Böck A (1986) Nucleotide sequence and expression of the selenocysteine-containing polypeptide of formate dehydrogenase (formate-hydrogen-lyase-linked) from Escherichia coli. Proc Natl Acad Sci USA 83: 4650–4654PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2002

Authors and Affiliations

  • A. Kyriakopoulos
    • 1
  • D. Behne
    • 1
  1. 1.Department of Molecular Trace Element Research in the Life SciencesHahn-Meitner-Institut BerlinBerlinGermany

Personalised recommendations