Advertisement

A digital Orrery

  • James H. Applegate
  • Michael R. Douglas
  • Yekta Gürsel
  • Peter Hunter
  • Charles L. Seitz
  • Gerald Jay Sussman
2. Super/Parallel Computers
Part of the Lecture Notes in Physics book series (LNP, volume 267)

Abstract

We have designed and built the Orrery, a special computer for high-speed high-precision orbital mechanics computations. On the problems the Orrery was designed to solve, it achieves approximately 10 Mflops in about 1 ft3 of space while consuming 150 W of power. The specialized parallel architecture of the Orrery, which is well matched to orbital mechanics problems, is the key to obtaining such high performance. In this paper we discuss the design, construction, and programming of the Orrery.

Index Terms

Computer architecture N=body computations numerical computation orbital mechanics parallel computation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W. J. Bouknight et al., “The Illiac IV system,” Proc. IEEE, vol. 60, p. 369, 1972.CrossRefGoogle Scholar
  2. [2]
    D. Brouwer, “The theory of orbits in the solar system and in stellar systems,” in Proc. IAU Symp. 25, G. Contopoulos, Ed. New York: Academic, 1966.Google Scholar
  3. [3]
    D. Brouwer and G. M. Clemence, Methods of Celestial Mechanics. New York: Academic, 1961.Google Scholar
  4. [4]
    B. V. Chirikov, “A universal instability in many-dimensional oscillator systems,” Phys. Rep., vol. 52, p. 283, 1979.CrossRefADSMathSciNetGoogle Scholar
  5. [5]
    C. J. Cohen and E. C. Hubbard, “Libration of the close approaches of Pluto to Neptune,” Astron. J., vol. 70, no. 10, 1965.Google Scholar
  6. [6]
    C. J. Cohen, E. C. Hubbard, and C. Oesterwinter, “Elements of the outer planets for one million years,” in Astron. Papers Amer. Ephemeris Nautical Almanac, vol. XXII, pt. I, U.S. Naval Observatory.Google Scholar
  7. [7]
    D. Cohen, “The MOSIS story,” in Proc. 4th Jerusalem Conf. Inform. Technol., IEEE cat. 84CH2022-2, 1984, p. 650.Google Scholar
  8. [8]
    P. H. Cowell and A. C. D. Crommelin, “Investigation of the motion of Halley’s Comet from 1759–1910,” in Appendix, Greenwich Observations 1909, Bellevue, England: Neill, 1910.Google Scholar
  9. [9]
    R. Greenberg and H. Scholl, “Resonances in the asteroid belt,” in Asteroids. Tucson, AZ: Univ. Arizona Press, 1979, p. 310.Google Scholar
  10. [10]
    P. Goldreich and S. Tremaine, “Dynamics of planetary rings,” Annu. Rev. Astron. Astrophys., vol. 20, p. 249, 1982.CrossRefADSGoogle Scholar
  11. [11]
    R. W. Hamming, Numerical Methods for Scientists and Engineers. New York: McGraw-Hill, 1973.zbMATHGoogle Scholar
  12. [12]
    R. H. G. Hellerman, “Self-generated chaotic behaviour in nonlinear mechanics,” in Fundamental Problems in Statistical Mechanics V, E. G. D. Cohen, Ed. New York: North-Holland, 1981.Google Scholar
  13. [13]
    C. Kingsley, “Earl: An integrated circuit design language,” Dep. Comput. Sci., Calif. Inst. Technol., Pasadena, Tech. Rep. 5021:TR:82, May 1982.Google Scholar
  14. [14]
    D. E. Knuth, The Art of Computer Programming, Vol. 2. Reading, MA: Addison-Wesley, 1981.zbMATHGoogle Scholar
  15. [15]
    G. Lewicki, D. Cohen, P. Losleben, and D. Trotter, “MOSIS: Present and future,” in Proc. M.I.T. Conf. Adv. Res. VLSI. Dedham, MA: Artech Books, 1984, pp. 124–128.Google Scholar
  16. [16]
    P. E. Nacozy and R. E. Diehl, “On the long term motion of Pluto,” Astron. J., vol. 83, p. 522, 1978.CrossRefADSGoogle Scholar
  17. [17]
    C. Oesterwinter and C. J. Cohen, “New orbital elements for the moon and planets,” in Celestial Mechanics 5. Dordrecht, The Netherlands: D. Reidel, 1972, pp. 317–395.Google Scholar
  18. [18]
    H. Scholl, “Recent work on the origin of the Kirkwood gaps,” in Dynamics of the Solar System, R. Duncombe, Ed. Dordrecht, The Netherlands: D. Reidel, 1979.Google Scholar
  19. [19]
    E. L. Stiefel and G. Scheifele, Linear and Regular Celestial Mechanics, Perturbed Two-Body Motion. New York: Springer-Verlag, 1971.Google Scholar
  20. [20]
    V. Szebhely, Theory of Orbits, The Restricted Problem of Three Bodies. New York: Academic, 1967.Google Scholar
  21. [21]
    F. A. Ware, “A 64-bit floating point processor chip set,” in Proc. ISSCC, vol. 24, 1982.Google Scholar
  22. [22]
    J. G. Williams and G. S. Benson, “Resonances in the Neptune-Pluto system,” Astron. J., vol. 76, p. 167, 1971.CrossRefADSGoogle Scholar
  23. [23]
    J. Wisdom, “The origin of the Kirkwood gaps, etc.,” Astron. J., vol. 87, p. 577, 1982.CrossRefADSMathSciNetGoogle Scholar
  24. [24]
    _____, “Chaotic behavier and the origin of 3/1 Kirkwood gap,” Icarus, vol. 56, pp. 51–74, 1984.CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • James H. Applegate
    • 1
  • Michael R. Douglas
    • 2
  • Yekta Gürsel
    • 3
  • Peter Hunter
    • 4
  • Charles L. Seitz
    • 4
  • Gerald Jay Sussman
    • 5
  1. 1.Department of AstronomyColumbia UniversityNew York
  2. 2.Department of PhysicsCalifornia Institute of TechnologyPasadena
  3. 3.Artificial Intelligence LaboratoryMassachusetts Institute of TechnologyCambridge
  4. 4.Department of Computer ScienceCalifornia Institute of TechnologyPasadena
  5. 5.Department of Electrical Engineering and Computer ScienceMassachusetts Institute of TechnologyCambridge

Personalised recommendations