Pusle electron spin resonance and quasi-elastic light scattering of Winsor microemuslions

  • P. Baglioni
  • C. M. C. Gambi
  • D. Goldfarb
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 84)


The interfacial region of Winsor microemulsions has been studied at the molecular level by electron spin echo modulation technique using doxyl stearic acid spin probes. We found that the water and oil molecules are located at opposite sides of the interface, and that the alcohol molecules are mainly located at the water side of the interface for all the microemulsions studied. Thus, alcohol, oil, and water molecules belong to well separated regions of the interface. No significant variation of the water and alcohol molecules distribution at the interface is observed in Winsor I and III microemulsions as a function of salt addition. The oil molecules, however, penetrate deeper into the interfacial film in Winsor I as compared to Winsor III microemulsions. The inner part of the interface of Winsor I and II microemuslions changes as a function of salt addition, whereas the outer part remains unchanged; in Winsor III microemulsions both the inner and the outer parts of the interface remain unchanged. This behavior is in agreement with the asymmetry in the interfacial properties expected for welldefined aggregates (w/o and o/w) and with the symmetry of the bicontinuous microemulsions interfacial film. Quasi-elastic light-scattering has been used to compare the structure of the Winsor microemulsions with and without probe addition and components deuteration.

Key words

Microemulsion interfacial film electron spin echo resonance quasi-elastic light-scattering nitroxide probe 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kevan L, Bowman MK (1990) In: Modern Pulsed and Continuous — Wave Electron Spin Resonance. New York, WileyGoogle Scholar
  2. 2.
    Baglioni P, Kevan L (1987) J Phys Chem 91:1516CrossRefGoogle Scholar
  3. 3.
    Maldonado R, Szajdzinska-Pietek E, Kevan L (1984) Faraday Discuss Chem Soc 78:165CrossRefGoogle Scholar
  4. 4.
    Kevan L, Baglioni P (1990) Pure Appl Chem 62:275CrossRefGoogle Scholar
  5. 5.
    Winsor PA (1948) Trans Faraday Soc 44:376CrossRefGoogle Scholar
  6. 6.
    Winsor PA (1968) Chem Rev 68:1CrossRefGoogle Scholar
  7. 7.
    Baglioni P, Gambi CMC, Goldfarb D (1991) J Phys Chem 95:2577CrossRefGoogle Scholar
  8. 8.
    Baglioni P, Ferroni E, Gambi CMC (in preparation) J Phys ChemGoogle Scholar
  9. 9.
    Bellocq AM, Biais J, Clin B, Gelot A, Lalanne P, Lemanceau B (1980) J Colloid Interface Sci 74(2):311CrossRefGoogle Scholar
  10. 10.
    Pouchelon A, Meunier J, Langewin D, Chatenay D, Cazabat AM (1980) Chemical Physics Letters 76(2):277CrossRefGoogle Scholar
  11. 11.
    Pouchelon A, Chatenay D, Meunier J, Langevin D (1981) J Colloid Interface Sci 82(2):418CrossRefGoogle Scholar
  12. 12.
    Pouchelon A (1982) thesis, ParisGoogle Scholar
  13. 13.
    Guéring P, Lingdman B (1985) Langmuir 1:464CrossRefGoogle Scholar
  14. 14.
    Cazabat AM, Langevin D (1981) J Chem Phys 74(6)3148CrossRefGoogle Scholar
  15. 15.
    Cazabat AM, Chatenay D, Langevin D, Meunier J, Léger L (1984) In: Mittal KL, Lindman B (eds) Surfactants in Solution. Plenum, New York, vol 3, p 1729Google Scholar
  16. 16.
    Chatenay D, Urbach W, Cazabat AM, Langevin D (1985) Phys Rev Lett 54(20):2253CrossRefGoogle Scholar
  17. 17.
    Auvray L, Cotton JP, Ober R, Taupin C (1984) J Physique 45:913CrossRefGoogle Scholar
  18. 18.
    Auvray L, Cotton JP, Ober R, Taupin C (1984) J Phys Chem 88:4586CrossRefGoogle Scholar
  19. 19.
    Auvray L, Cotton JP, Ober R, Taupin C (1986) Physica 136B:281Google Scholar
  20. 20.
    Auvray L (1985) thesis, ParisGoogle Scholar
  21. 21.
    Guest D, Auvray L, Langevin D (1985) J Physique Lett 46:1055CrossRefGoogle Scholar
  22. 22.
    Lachaise J, Graciaa A, Martinez A, Rousset A (1981) Thin Solid Films 82:55CrossRefGoogle Scholar
  23. 23.
    Langevin D, Guest D, Meunier J (1986) J Colloids and Surfaces 19:159CrossRefGoogle Scholar
  24. 24.
    Cazabat AM, Langevin D, Meunier J, Pouchelon A (1982) Adv Colloid Int Sci 16:175CrossRefGoogle Scholar
  25. 25.
    Goldfarb D, Fauth JM, Tor Y, Shanger A (1991) J Am Chem Soc 113:1941CrossRefGoogle Scholar
  26. 26.
    Chittofrati A, Lenti D, Sanguineti A, Visca M, Gambi CMC, Senatra D, Zhou Z (1989) Progr Colloid Polym Sci 79:218CrossRefGoogle Scholar
  27. 27.
    Kevan L (1988) In: Fox MA, Chanon M (eds) Photoinduced Electron Transfer, Part B. Elsevier, Amstedam, pp 329–394Google Scholar
  28. 28.
    Ramachandran C, Pyter RA, Mukerjiee P (1982) J Phys Chem 86:3198CrossRefGoogle Scholar
  29. 29.
    Pyter RA, Ramachandran C, Mukerjiee P (1982) J Phys Chem 86:3206CrossRefGoogle Scholar
  30. 30.
    Baglioni P, Ottaviani MF, Martini G (1986) J Phys Chem 90:5878CrossRefGoogle Scholar
  31. 31.
    Szajdzinska-Pietek E, Maldonado R, Kevan L, Jones RRM (1985) J Am Chem Soc 107:6467CrossRefGoogle Scholar
  32. 32.
    Szajdzinska-Pietek E, Maldonado R, Kevan L, Jones RRM (1985) J Am Chem Soc 107:784CrossRefGoogle Scholar
  33. 33.
    Baglioni P, Nakamura H, Kevan L (in press) J Phys ChemGoogle Scholar
  34. 34.
    Chang NJ, Kaler E (1985) J Phys Chem 89:2996CrossRefGoogle Scholar
  35. 35.
    de Gennes PG, Taupin C (1982) J Phys Chem 86:2294CrossRefGoogle Scholar
  36. 36.
    Mitchell DJ, Ninham BW (1981) J Chem Soc Faraday Trans II 77:601CrossRefGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG 1991

Authors and Affiliations

  • P. Baglioni
    • 1
  • C. M. C. Gambi
    • 2
  • D. Goldfarb
    • 3
  1. 1.Daprtment of ChemistryUniversity of UdineUdineItaly
  2. 2.Department of PhysicsUniversity of FlorenceFlorenceItaly
  3. 3.Isotopes DepartmentThe Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations