Advertisement

Electrolyte dependent phase separation in aqueous mixtures of a polyelectrolyte and an ionic surfactant

  • K. Thalberg
  • B. Lindman
  • G. Karlström
Micelles
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 84)

Abstract

A mixture of a polyelectrolyte and an oppositely charged ionic surfactant generally phase separates from an aqueous solution due to the strong attractive interaction between the two solutes. Under certain conditions the concentrated phase is a transparent gel. Redissolution can be achieved by electrolyte addition or by a high surfactant concentration. Over a wide range of electrolyte concentrations, there is no phase separation. However, at high electrolyte concentrations, separation into two isotropic phases occurs. While phase separation at low electrolyte contents results in one dilute solution and one phase concentrated in polymer and surfactant, phase separation at high electrolyte concentrations is of a different nature and results in one solution rich in surfactant and one rich in polymer. The phenomenon is related to, but different from that displayed by two polymers in a common solvent; called "polymer incompatibility", and can be referred to the elimination of electrostatic interactions. The phase diagrams can be modelled in Flory-Huggins type calculations with reasonable assumptions of the intermolecular interactions.

Key words

Cationic surfactant polyanion polyelectrolyte phase separation phase behavior coacervate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goddard ED (1986) Colloids Surf 19:255/301; Hayakawa K, Kwak JCT (1991) In: Rubingh D, Holland PM (eds) Surf Sci Ser, Marcel Dekker, New York, chap 5CrossRefGoogle Scholar
  2. 2.
    Hayakawa K, Kwak JCT (1982) J Phys Chem 86:3866; hayakawa K, Santerre JP, Kwak JCT (1983) Macromolecules 16:1642, Malovikova A, Hayakawa K, Kwak JCT (1984) J Phys Chem 88:1930CrossRefGoogle Scholar
  3. 3.
    Cabane B, Duplessix R (1982) J Physique 43:1529; Colloids Surf (1985) 13:19CrossRefGoogle Scholar
  4. 4.
    Turro NJ, Baretz BH, Kuo P-L (1984) Macromolecules 17:1321; Abuin EB, Scaiano JC (1984) J Am Chem Soc 106:6274; Chu D, Thomas JK (1986) J Am Chem Soc 108:6270CrossRefGoogle Scholar
  5. 5.
    Hyaluronan was provided by Pharmacia AB, Uppsala, Sweden in the form of sodium salt (i.e. sodium hyaluronate). It was of a highly purified quality, containing no appreciable amounts of protein or other impurities. The molecular weight of the Hy preparation used in this work is about 250000Google Scholar
  6. 6.
    Comper WD, Laurent TC (1978) Physiol Rev 58(1):255; Laurent TC (1987) Acta Oto-Laryngol, Suppl 442:7Google Scholar
  7. 7.
    Flory PJ (1953) Principles of Polymer Chemistry; Cornell University Press: Ithaca, NYGoogle Scholar
  8. 8.
    Thalberg K, Lindman B, Karlström G (1990) J Phys Chem 94:4289CrossRefGoogle Scholar
  9. 9.
    Thalberg K, Lindman B, Karlström G, J Phys Chem, in pressGoogle Scholar
  10. 10.
    Bungenberg de Jong HG (1949) In: Colloid Science, vol II, Ed: Kruyt HR, Elsevier, Amsterdam; Chapter 10, p 259Google Scholar
  11. 11.
    Guastafsson Å, Wennerström H, Tjerneld F (1986) Polymer 27:1768CrossRefGoogle Scholar
  12. 12.
    Lindman B, Wennerström H (1980) Top Curr Chem 87:1CrossRefGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG 1991

Authors and Affiliations

  • K. Thalberg
  • B. Lindman
    • 2
  • G. Karlström
    • 1
  1. 1.Theoretical Chemistry, Chemical CenterLund UniversityLundSweden
  2. 2.Physical Chemistry 1 Chemical CenterUniversity of LundLundSweden

Personalised recommendations