Skip to main content

Dynamic rigidity percolation of inverted AOT micellar solutions

  • Dynamics
  • Conference paper
  • First Online:

Part of the book series: Progress in Colloid & Polymer Science ((PROGCOLLOID,volume 81))

Abstract

We use ultrasonic techniques and Brillouin scattering to study the elastic response of AOT surfactant solutions. This micellar solution features a short-range attractive interaction between the droplets. We find behavior consistent with a dynamic rigidity percolation wherein clusters that span the system can form in the solution at surfactant volume fractions above Φ ≈ 0.16. The percolation clusters contribute a real shear modulus causing an increase in the sound velocity if the frequency is higher than the characteristic relaxation rate of the cluster (∼108 Hz). By contrast, at low frequencies the solution behaves as an effective medium with isolated micelle aggregates imbedded in the oil continuum, and the anomalous contribution of the shear modulus disappears. This experiment provides a unique measurement of the scaling of the elastic properties for a percolating system. In particular, the rigidity exponent is found to be τ′ ⋍ 2.5, consistent with the theoretical predictions.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eckwell P, Mandell L, Fontell K (1970) J Colloid Interface Sci 33:215

    Article  Google Scholar 

  2. Jean YC, Aacke HJ (1978) J Am Chem Soc 100:6320

    Article  CAS  Google Scholar 

  3. Zulauf M, Eicke HF (1979) J Phys Chem 83:480

    Article  CAS  Google Scholar 

  4. Assih T, Larche F, Delford P (1982) J Colloid Interface Sci 89:35

    Article  CAS  Google Scholar 

  5. Kotlarchyk M, Huang JS, Chen SH (1985) J Phys Chem 89:4382

    Article  CAS  Google Scholar 

  6. Winsor PA (1968) Chem Rev 68:1

    Article  CAS  Google Scholar 

  7. Huang JS, Safran SA, Kim MW, Grest GS, Kotlarchyk M, Quirke N (1984) Phys Rev Lett 53:592

    Article  CAS  Google Scholar 

  8. Huang JS (1985) J Chem Phys 82:480

    Article  CAS  Google Scholar 

  9. Lemaire B, Bothorel P, Roux D (1983) J Chem Phys 89:1023

    Google Scholar 

  10. Kotlarchyk M, Chen SH, Huang JS, Kim MW (1984) Phys Rev A 29:2054

    Article  CAS  Google Scholar 

  11. Lang J, Jada A, Malliaris A (1988) J Phys Chem 92:1946

    Article  CAS  Google Scholar 

  12. Eicke HF, Shepherd JCW, Steinemann A (1976) I Coll Interface Sci 56:168

    Article  CAS  Google Scholar 

  13. Kim MW, Huang JS (1986) Phys Rev A 34:719

    Article  CAS  Google Scholar 

  14. Bhattacharya S, Stokes JP, Kim MW, Huang JS (1985) Phys Rev Lett 55:1884

    Article  CAS  Google Scholar 

  15. Peyrelasse J, Moha-Ouchane M, Bonded C (1988) Phys Rev A 38:904

    Article  CAS  Google Scholar 

  16. Mathew C, Patanjali PK, Nabi A, Maitra A (1988) coll Surf 30:253

    CAS  Google Scholar 

  17. deGennes PG, Taupin C (1982) J Phys Chem 86:2294

    Article  CAS  Google Scholar 

  18. Borkovec M, Eicke HF, Hammerich H, Gupta BD (1984) J Phys Chem 92:206

    Article  Google Scholar 

  19. Huang JS, Kotlarchyk M (1986) Phys Rev Lett 57:2587

    Article  CAS  Google Scholar 

  20. Fletcher JD, Galai MF, Robinson DH (1984) J Chem Soc Faraday Trans I 80:3307

    Article  CAS  Google Scholar 

  21. Jahn W, Strey R (1988) J Phys Chem 92:2294

    Article  CAS  Google Scholar 

  22. Van Dijk MA (1985) Phys Rev Lett 55:1003

    Article  Google Scholar 

  23. See, for instance, Berne BJ, Pecora P (1976) In: Dynamic Light Scattering, John Wiley, New York, p 247

    Google Scholar 

  24. Williams EF, Woodberry NJ, Dixon JK (1957) J Coll Sci 12:452

    Article  CAS  Google Scholar 

  25. Hashin Z (1962) J Appl Mech 29:143

    CAS  Google Scholar 

  26. Sheng P (1986) In: Ericksen JL, Kinderlehrer D, Kohn R, Lions JL (eds) Homogenization and Effective Moduli of Materials and Media. Springer-Verlag, New York, p 196

    Google Scholar 

  27. Berryman JG (1980) J Acoust Soc Am 68:1809

    Article  Google Scholar 

  28. deGennes PG (1976) J Phys Lett 37:L1

    Google Scholar 

  29. Stauffer D (1985) In: Introduction to Percolation Theory. Taylor and Francis, London, p 52

    Google Scholar 

  30. For the case of central force clusters, the percolation threshold Φ c = 1

    Google Scholar 

  31. Kantor Y, Webman I (1984) Phys Rev Lett 52:1891

    Article  Google Scholar 

  32. Maitra AN (1989) preprint

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

M. Zulauf P. Lindner P. Terech

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Dr. Dietrich Steinkopff Verlag GmbH & Co. KG

About this paper

Cite this paper

Huang, J.S., Ye, L., Weitz, D.A., Sheng, P., Bhattacharya, S., Higgins, M.J. (1990). Dynamic rigidity percolation of inverted AOT micellar solutions. In: Zulauf, M., Lindner, P., Terech, P. (eds) Trends in Colloid and Interface Science IV. Progress in Colloid & Polymer Science, vol 81. Steinkopff. https://doi.org/10.1007/BFb0115526

Download citation

  • DOI: https://doi.org/10.1007/BFb0115526

  • Published:

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-7985-0839-2

  • Online ISBN: 978-3-7985-1687-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics