Skip to main content

Relaxation in permanent networks

  • Conference paper
  • First Online:

Part of the book series: Progress in Colloid & Polymer Science ((PROGCOLLOID,volume 80))

Abstract

By linking together the theory of finite elasticity and thermodynamics of irreversible processes one is led to a very general description of deformation. The clue to the simplicity of describing relaxation in permanent networks is the existence of the van der Waals network model which allows a unique description of the nonlinear equilibrium states of reference. Having then a set of relaxation processes coupled to the network (“global level”) one arrives at the prediction that only shear relaxation is important. This is proven to hold true by describing relaxation during stress-strain experiments at different temperatures in different deformation modes including the regime of large strains.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kilian HG (1981) Polymer 22:209

    Article  CAS  Google Scholar 

  2. Kuhn W (1936) Kolloid Z 76:256

    Article  Google Scholar 

  3. Treloar LRG (1958) The physics of rubber elasticity. Clarendon Press, Oxford

    Google Scholar 

  4. Kilian HG (1982) Coll Polym Sci 260:895

    Article  CAS  Google Scholar 

  5. Helfand E, Pearson DS (1984) Macromol 18:888

    Google Scholar 

  6. Lodge AS, Armstrong RC, Wagner MH, Winter HH (1982) Pure Appl Chem 54:1359

    Google Scholar 

  7. de Groot S, Mazur P (1962) Non-Equilibrium Thermodynamics. North-Holland, Amsterdam

    Google Scholar 

  8. Meixner J, Reik HG (1959) Thermodynamik der irreversiblen Prozesse. Handbuch der Physik, Vol III/2. Springer, Berlin Göttingen Heidelberg

    Google Scholar 

  9. Hasse R (1963) Thermodynamik der irreversiblen Prozesse. Fortschritte der Physikalischem Chemie, Vol 8. Steinkopff, Darmstadt

    Google Scholar 

  10. Baur H (1984) Einführung in die Thermodynamik der irreversiblen Prozesse. Wiss Buchgesellschaft, Darmstadt

    Google Scholar 

  11. Schlögl R (1964) Stofftransport durch Membranen. Steinkopff, Darmstadt

    Google Scholar 

  12. Keller U (1977) Thermodynamik der irreversiblen Prozesse, Thermostatik und Grundbegriffe. De Gruyter, Berlin New York

    Google Scholar 

  13. Valanis KC (1971) Irreversible Thermodynamics of Continuous Media. CISM-Course 77. Springer, Wien

    Google Scholar 

  14. Kilian HG, Vilgis Th (1984) Coll Polym Sci 262:691

    Article  Google Scholar 

  15. Enderle HF, Kilian HG, Vilgis T (1984) Coll Polym Sci 262:696

    Article  CAS  Google Scholar 

  16. Green AE, Atkins JE (1970) Large Elastic Deformation. Clarendon Press, Oxford

    Google Scholar 

  17. Truesdell C (1984) Rational Thermodynamics, 2nd ed. Springer, New York

    Google Scholar 

  18. Haupt P (1977) Viskoelastizität und Plastizität (Ingenieurwiss Bibl). Springer, Berlin

    Google Scholar 

  19. Coleman B, Nole N (1961) Rev Mod Phys 33:239

    Article  Google Scholar 

  20. Betten J (1985) Elastizitäts-und Plastizitätslehre. Vieweg, Braunschweig

    Google Scholar 

  21. Onsager L (1931) Phys Rev 37:405

    Article  CAS  Google Scholar 

  22. Onsager L (1931) Phys Rev 38:2265

    Article  CAS  Google Scholar 

  23. Meixner J (1949) Z Naturforsch 4a:594

    CAS  Google Scholar 

  24. Meixner J (1953) Koll-Z 234:3

    Article  Google Scholar 

  25. Enderle HF (1988) Thesis. University of Ulm

    Google Scholar 

  26. Alts T (1976) Arch Rat Mech Anal 51:253

    Article  Google Scholar 

  27. Eringen C (1960) Phys Rev 38:2265

    Google Scholar 

  28. Rivlin RS (1949) Phil Trans Royal Soc A242:173

    Article  Google Scholar 

  29. Spencer AJM (1980) Continuum mechanics. Longman, London

    Google Scholar 

  30. Rivlin RS, Saunders DN (1950) Phil Trans Royal Soc A242:256

    Google Scholar 

  31. Kilian HG (1985) Coll Polym Sci 263:30

    Article  Google Scholar 

  32. Kilian HG (1980) Polym Bull 3:351

    Article  Google Scholar 

  33. Eisele U, Heise B, Kilian HG, Pietralla M (1981) Angew Makromol Chem 100:67

    Article  CAS  Google Scholar 

  34. Rivlin RS, Saunders DN (1950) Phil Trans Royal Soc A242:256

    Google Scholar 

  35. Enderle HF, Kilian HG (1987) Prog Coll Polym Sci 75:55

    Article  Google Scholar 

  36. Pak H, Flory PJ (1979) J Polym Sci. Phys Ed 17:1845

    Article  CAS  Google Scholar 

  37. Macosko W, Benjamin GS (1981) Pure Appl Chem 53:1505

    Article  CAS  Google Scholar 

  38. Kawabata S, Matsuoka M, Tei K, Kawai H (1981) Macromol 14:154

    Article  CAS  Google Scholar 

  39. Godovsky YK (1977) Vysokomol Soed A19:2359

    Google Scholar 

  40. Kilian HG (1982) Coll Polym Sci 260:895

    Article  CAS  Google Scholar 

  41. Göritz H (1982) Coll Polym Sci 260:193

    Article  Google Scholar 

  42. Kilian HG (1987) Prog Coll Polym Sci 75:213

    Article  Google Scholar 

  43. Flory PJ (1953) Principles of Polymer Chemistry. Cornell University Press, London

    Google Scholar 

  44. Chang WV, Bloch R, Tschoegl NW (1976) Proc Natl Acad Sci USA 73:4:983

    Article  Google Scholar 

  45. Mancke RG, Ferry JD (1968) Trans Soc Rheol 12:335

    Article  CAS  Google Scholar 

  46. Goldberg W, Lianis G (1968) Trans ASME, J Appl Mech 35:433

    Google Scholar 

  47. Goldberg W, Bernstein B, Lianis G (1969) Int J Nonlin Mech 4:277

    Article  Google Scholar 

  48. Arenz RJ, Landel RF (1982) J Poly Sci: P Phys Ed 20:363

    Article  CAS  Google Scholar 

  49. Schwarzl FR, Staverman AJ (1953) Appl Sci Res A4:127

    Google Scholar 

  50. In: Stuart HA (1956) Die Physik der Hochpolymeren, Vol IV. Springer, Linear deformation behavior in high polymers

    Google Scholar 

  51. Sauter A (in preparation) Thesis. University of Ulm

    Google Scholar 

  52. Holl B, Kilian HG, Schenk H (in press) Coll Polym Sci

    Google Scholar 

  53. Katz JR (1925) Naturwissenschaften 13:410

    Article  Google Scholar 

  54. Treloar LG (1941) Trans Farad Soc 37:84

    Article  CAS  Google Scholar 

  55. Gottlieb M, Macosco CW, Lepsch TC (1981) J Polym Sci, Phys Ed 19:1603

    Article  CAS  Google Scholar 

  56. Smith TL (1962) Trans Soc Rheol 6:61

    Article  CAS  Google Scholar 

  57. Scholtens BJR, Broij HC, Leblans PJR (1986) J Rheol 30:301

    Article  CAS  Google Scholar 

  58. Scholtens BJR, Leblans PJR (1986) J Rheol 30:313

    Article  CAS  Google Scholar 

  59. Demarels A, Meissner J (1986) Coll Polym Sci 264:829

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

M. Pietralla W. Pechhold

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Dr. Dietrich Steinkopff Verlag GmbH & Co. KG

About this paper

Cite this paper

Ambacher, H., Enderle, H.F., Kilian, H.G., Sauter, A. (1989). Relaxation in permanent networks. In: Pietralla, M., Pechhold, W. (eds) Relaxation in Polymers. Progress in Colloid & Polymer Science, vol 80. Steinkopff. https://doi.org/10.1007/BFb0115432

Download citation

  • DOI: https://doi.org/10.1007/BFb0115432

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-7985-0832-3

  • Online ISBN: 978-3-7985-1689-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics