Third harmonic generation in perylene derivatives

  • S. Schrader
  • K. H. Koch
  • A. Mathy
  • C. Bubeck
  • K. Müllen
  • G. Wegner
Conference paper
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 85)


The nonlinear optical properties of a series of tetratert.-butyl-perylene derivatives of different molecular sizes were investigated by means of third harmonic generation. — The nonlinear susceptibilities χ (3)(−3ω,ω,ω,ω) of the smaller molecules (biperylenyle, terrylene, quaterrylene) as measured by excitation with a Nd;YaG-laser (wavelength=1064 nm) are in the range of 10−12 esu and are one order of magnitude lower than that of the pentarylene. Its χ (3)-value reaches a magnitude greater than 5×10−11 esu which is comparable to the χ (3) of linear conjugated polymers. The nonlinear susceptibility of the investigated perylene derivatives increases with the interrelated quantities of the reciprocal of the S 0S 1-excitation energy, the wavelength of the absorption maximum, and the length of the molecule. Resonance enhancement of the nonlinear susceptibility is observed for the biperylenyle due to a mutual two-photon resonance and for the pentarylene due to both one-photon and three-photon resonance.

Key words

Third harmonic generation nonlinear optical properties perylene derivatives 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chemla DS, Zyss J (eds) (1987) Nonlinear Optical Properties of Organic Molecules and Crystals. Academic Press, New YorkGoogle Scholar
  2. 2.
    Neher D, Kaltbeitzel A, Wolf A, Bubeck C, Wegner G (1990) In: Bredas JL, Chance RR (eds) Conjugated Polymeric Materials — Opportunities in Electronics. Kluwer Acad Publ, Dordrecht, p 387Google Scholar
  3. 3.
    Agrawal GP, Cojan C, Flytzanis C (1987) Phys Rev B17:776Google Scholar
  4. 4.
    Schrader S, Koch KH, Mathy A, Bubeck C, Müllen K, Wegner G (1991) Synth Met 43/1–2:3233, Fig. 4 by permission of Elsevier Sequoia S. A. Publishers, LausanneGoogle Scholar
  5. 5.
    Clar E, Kelly W, Laird RM (1956) Mh Chem 87:391Google Scholar
  6. 6.
    Bohnen A, Koch KH, Lüttke W, Müllen K (1990) Angew Chem Int Ed Engl 29:525CrossRefGoogle Scholar
  7. 7.
    Koch KH, Fahnenstich U, Baumgarten M, Müllen K (1991) Synth Met 41–43Google Scholar
  8. 8.
    Koch KH (1991) Thesis. Johannes-Gutenberg-University Mainz, GermanyGoogle Scholar
  9. 9.
    Koch KH, Müllen K (1991) Chem Ber: submittedGoogle Scholar
  10. 10.
    Neher D (1990) Thesis. Johannes-Gutenberg University Mainz, GermanyGoogle Scholar
  11. 11.
    Neher D, Wolf A, Kaltbeitzel A, Bubeck C, Wegner G (1991) J Phys D Appl Phys: in pressGoogle Scholar
  12. 12.
    Neher D, Wolf A, Bubeck C, Wegner G (1989) Chem Phys Lett 163:116CrossRefGoogle Scholar
  13. 13.
    Maker PD, Terhune RW, Nisenoff M, Savage CM (1962) Phys Rev Lett 8:21CrossRefGoogle Scholar
  14. 14.
    Koch KH (1990): unpublished resultsGoogle Scholar
  15. 15.
    Hermann JP, Decuing J (1974) J Appl Phys 45:5100CrossRefGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG 1991

Authors and Affiliations

  • S. Schrader
    • 1
    • 1
  • K. H. Koch
    • 1
  • A. Mathy
    • 1
  • C. Bubeck
    • 1
  • K. Müllen
    • 1
  • G. Wegner
    • 2
  1. 1.Max-Planck-Institut für PolymerforschungMainzFRG
  2. 2.Zentralinstitut für Organische ChemieBereich Makromolekulare VerbindungenBerlinFRG

Personalised recommendations