Advertisement

Surface potentials in concentrated isotropic micellar cystems

  • C. J. Drummond
  • B. S. Murray
Conference paper
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 88)

Abstract

The solvatochromic acid-base indicator 2,6-diphenyl-4-(2,4-6-triphenyl-1-pyridinio)phenooxide, E T(30), is employed to determine the effective surface potentials of micelles (Ψ 0 expt ) in relatively concentrated aqueous dodecyltrimethylammonium chloride (DTAC) systems (i.e. up to 40 wt% DTAC). Ψ 0 expt decreases with increasing DTAC concentration, This is attributed to a concomitant increase in the amount of dissociated chloride ions in solution when the DTAC micellar concentration is increased. The effective surface potentials are compared with the electrostatic surface potentials obtained in relatively dilute micellar DTAC/NaCl systems and with the electrostatic surface potentials calculated from the non-linearized Poisson-Boltzmann (P-B) equation and a cell model (Ψ 0 cell ). The P-B cell model, which incorporates a Langmuir adsorption constant in order to categorize the association of Cl to the surfactant headgroups, adequately describes Ψ 0 expt up to 7 wt% DTAC. Beyond 7 wt% Ψ 0 expt and Ψ 0 cell progressively diverge. The divergence is primarily considered to be a result of the fact that the P-B cell model neglects the ion-ion correlations and the finite size of the ions.

Key words

Micelles electrostatic surface potentials counter-ion association/dissociation concentrated surfactant system dodecyltrimethylammonium chloride (DTAC) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gunnarsson G, Jonsson B, Wennerstrom H (1980) J Phys Chem 84:3114CrossRefGoogle Scholar
  2. 2.
    Jonsson B, Wennerstrom H (1981) J Colloid Interface Sci 80:482CrossRefGoogle Scholar
  3. 3.
    Jonsson B, Wennerstrom H (1987) J Phys Chem 91:338CrossRefGoogle Scholar
  4. 4.
    Pashley RM, McGuiggan PM, Ninham BW, Brady J, Evans DF (1986) J Phys Chem 90:1637CrossRefGoogle Scholar
  5. 5.
    Drummond CJ, Grieser F, Healy TW (1987) Chem Phys Lett 140:493CrossRefGoogle Scholar
  6. 6.
    Kibblewhite J, Drummond CJ, Grieser F, Healy TW (1987) J Phys Chem 91:4658CrossRefGoogle Scholar
  7. 7.
    Drummond CJ, Grieser F, Healy TW (1988) J Phys Chem 92:2604CrossRefGoogle Scholar
  8. 8.
    Kaneko T, Miller DD, Evans DF (1990) J Solution Chem 19:457CrossRefGoogle Scholar
  9. 9.
    Murray BS, Drummond CJ, Grieser F, White LR (1990) J Phys Chem 94:6804CrossRefGoogle Scholar
  10. 10.
    Murray BS, Drummond CJ, Gale L, Grieser F, White LR (1991) Colloids & Surfaces 52:287CrossRefGoogle Scholar
  11. 11.
    Balmbra RR, Clunie JS, Goodman JF (1969) Nature 222:1159CrossRefGoogle Scholar
  12. 12.
    Malliaris A, Le Moigne J, Sturm J, Zana R (1985) J Phys Chem 89:2709CrossRefGoogle Scholar
  13. 13.
    Malliaris A, Lang J, Zana R (1986) J Colloid Interface Sci 110:237CrossRefGoogle Scholar
  14. 14.
    Roelants E, De Schryver FC (1987) Langmuir 3:209CrossRefGoogle Scholar
  15. 15.
    Johansson LB-A, Soderman O (1987) J Phys Chem 91:5275CrossRefGoogle Scholar
  16. 16.
    Drummond CJ, Grieser F, Healy TW (1986) Faraday Discuss Chem Soc 81:95CrossRefGoogle Scholar
  17. 17.
    Maeda T, Satake I (1988) Bull Chem Soc Jpn 61:1933CrossRefGoogle Scholar
  18. 18.
    Kale KM, Cussler EL, Evans DF (1980) J Phys Chem 84:593CrossRefGoogle Scholar
  19. 19.
    Pashley RM, Ninham BW (1987) J Phys Chem 91:2902CrossRefGoogle Scholar
  20. 20.
    Pashley RM, McGuiggan PM, Horn RG, Ninham BW (1988) J Colloid Interface Sci 126:569CrossRefGoogle Scholar
  21. 21.
    Marra J, Hair ML (1989) J Colloid Interface Sci 128:511CrossRefGoogle Scholar
  22. 22.
    Richetti P, Kekicheff P (1991) Phys Rev Lett (submitted)Google Scholar
  23. 23.
    Tanford C (1972) J Phys Chem 76:3020CrossRefGoogle Scholar
  24. 24.
    Reiss-Husson F, Luzzati V (1964) J Phys Chem 68:3504CrossRefGoogle Scholar
  25. 25.
    Ohshima H, Healy TW, White LR (1982) J Colloid Interface Sci 90:17CrossRefGoogle Scholar
  26. 26.
    Bell GM, Dunning AJ (1970) Trans Faraday Soc 66:500CrossRefGoogle Scholar
  27. 27.
    Marcus Y (1983) J Solution Chem 12:271CrossRefGoogle Scholar
  28. 28.
    Langner M, Cafiso D, Marcelja S, McLaughlin S (1990) Biophys J 57:335CrossRefGoogle Scholar
  29. 29.
    Healy TW, Drummond CJ, Grieser F, Murray BS (1990) Langmuir 6:506CrossRefGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG 1992

Authors and Affiliations

  • C. J. Drummond
    • 1
  • B. S. Murray
    • 2
  1. 1.Department of applied Mathematics, Research School of Physical SciencesThe Australian National UniversityCanberraAustralia
  2. 2.School of ChemistryThe University of MelbourneParkvilleAustralia

Personalised recommendations