Effect of electrolyte on the depletion and structural forces in a micellar system

  • P. Kékicheff
  • P. Richetti
Conference paper
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 88)

Abstract

The force as a function of separation is measured between two mica surfaces coated with adsorbed bilayers of cetyltrimethylammonium bromide (CTAB) and immersed in aqueous ionic micellar solutions of CTAB at different ionic strengths. At short separations, the interaction profile is a double-layer repulsion, arising solely from the dissociated counterions, free CTA+, and added salt. At larger separations, the repulsion is reduced and a secondary minimum in the interaction potential due to the depletion of the micelles from the diffuse double-layer is observed. Finally, at further separations, structural effects superimpose an oscillatory force profile. Addition of electrolyte reduces the thickness of the diffuse double-layers. In addition to the shift of the position of the secondary minimum towards smaller separations, the depletion and structural contributions are depressed progressively as the hard-sphare effective volume of micelles decreases. Finally, at high ionic strength, the structural effects are completely removed, but not the depletion one, as the micelles become highly anisotropic.

Key words

Direct micelles depletion structural forces surface force apparatus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Derjaguin BV, Landau L (1941) Acta Phys Chim USSR 14:633Google Scholar
  2. 2.
    Verwey EJW, Overbeek JThG, (1947) Theory of the Stability of Lyophobic Colloids. Elsevier, AmsterdamGoogle Scholar
  3. 3.
    Mahanty J, Ninham BW (1976) Dispersion Forces. Academic Press, New YorkGoogle Scholar
  4. 4.
    see for example: Tarazona P (1985) Phys Rev A31:2672; Kjellander R, Sarman S (1988) Chem Phys Lett 149:102Google Scholar
  5. 5.
    Asakura S, Oosawa F (1954) J Chem Phys 22:1255; (1958) J Polym Sci 33:183Google Scholar
  6. 6.
    Derjaguin BV, Churaev NV (1974) J Colloid Interface Sci 49:249; Marčelja S, Radic N (1976) Chem Phys Lett 42:129; Le Neveu DM, Rand RP, Parsegian VA (1976) Nature (London) 259:601CrossRefGoogle Scholar
  7. 7.
    Mitchell DJ, Ninham BW, Pailthorpe BA (1977) Chem Phys Lett 51:257; (1978) J Chem Soc Faraday Trans 2 74:1098, 1116; van Megen W, Snook IK (1979) J Chem Soc Faraday Trans 2 75:1095; Snook IK, van Megen WJ (1979) J Chem Phys 72:2907CrossRefGoogle Scholar
  8. 8.
    Horn RG, Israelachvili JN (1981) J Chem Phys 75:1400; Christenson HK (1983) J Chem Phys 78:6906; Christenson HK, Horn RG (1983) Chem Phys Lett 98:45CrossRefGoogle Scholar
  9. 9.
    Vrij A (1976) Pure Appl Chem 48:471; Vincent B, Luckham PF, Waite FA (1980) J Colloid Interface Sci 73:508; Sperry PR, Hopfenberg HB, Thomas NL (1981) J Colloid Interface Sci 82:62; De Hek H, Vrij A (1981) J Colloid Interface Sci 84:409; Sperry PR (1984) J Colloid Interface Sci 99:97CrossRefGoogle Scholar
  10. 10.
    Joanny JF, Liebler L, de Gennes PG (1979) J Polymer Sci Polymer Phys 17:1073; Feigin RI, Napper DH (1980) J Colloid Interface Sci 74:567; (1980) 75:525CrossRefGoogle Scholar
  11. 11.
    Gast AP, Hall CK, Russel WB (1983) J Colloid Interface Sci 96:251; (1983) Faraday Discuss Chem Soc 76:189CrossRefGoogle Scholar
  12. 12.
    Attard P (1989) J Chem Phys 91:3072, 3083CrossRefGoogle Scholar
  13. 13.
    Pashley RM, Ninham BW (1987) J Phys Chem 91:2902; Pashley RM, McGuiggan PM, Horn RG, Ninham BW (1988) J Colloid Interface Sci 126:569CrossRefGoogle Scholar
  14. 14.
    Marra J, Hair ML (1989) J Colloid Interface Sci 128:511CrossRefGoogle Scholar
  15. 15.
    Richetti P, Kékicheff P (1992) Phys Rev Lett 68:1951CrossRefGoogle Scholar
  16. 16.
    Israelachvili JN, Adams GE (1978) J Chem Soc Faraday Trans 1 74:975CrossRefGoogle Scholar
  17. 17.
    Parker JL, Christenson HK, Ninham BW (1989) Rev Sci Instrum 60:3135CrossRefGoogle Scholar
  18. 18.
    In Numerical Recipes Cambridge University Press (1986)Google Scholar
  19. 19.
    Reiss-Husson F, Luzzati V (1964) J Phys Chem 68:3504CrossRefGoogle Scholar
  20. 20.
    Mazer NA, Benedek GB, Carey MC (1976) J Phys Chem 80:1075; Young CY, Missel PJ, Mazer NA, Benedek GB, Carey MC (1978) ibid 82:1375; Missel PJ, Mazer NA, Benedck GB, Carey MC (1983) ibid 87:1264CrossRefGoogle Scholar
  21. 21.
    Porte G, Appell J, Poggi Y (1980) J Phys Chem 84:3105; Porte G, Appell J (1981) ibid 85:2511; Appell J, Porte G, Poggi Y (1982) J Colloid Interface Sci 87:492; Appell J, Porte G (1983) J Phys Lett (Paris) 44:L-689CrossRefGoogle Scholar
  22. 22.
    Ikeda S, Ozeki S, Tsunoda MA (1980) J Colloid Interface Sci 73:27; Ozeki S, Ikeda S (1980) ibid, 77:219, Ikeda S, Hayashi S, Imae T (1981) J Phys Chem 85:106; Imae T, Ikeda S (1984) Colloid Polym Sci 262:497CrossRefGoogle Scholar
  23. 23.
    Imae T, Kamiya K, Keda S (1985) J Colloid Interface Sci 108:215CrossRefGoogle Scholar
  24. 24.
    Mukerjee P, Mysels KJ (1971) Natl Stand Ref Data Ser (U.N. Natl. Bur. Stand., Washington, DC), no. 36Google Scholar
  25. 25.
    Tartar HV (1959) J Colloid Interface Sci 14:115Google Scholar
  26. 26.
    Ekwall P, Mandell L, Solyom P (1971) J Colloid Interface Sci 35:519CrossRefGoogle Scholar
  27. 27.
    Dorrance RC, Hunter TF (1974) J Chem Soc Faraday Trans 1 70:1572; Aikawa M, Yekta A, Turro N (1979) J Chem Phys Lett 68:285; Lianos P, Zana R (1981) J Colloid Interface Sci 84:100CrossRefGoogle Scholar
  28. 28.
    Dorshow R, Briggs J, Bunton CA, Nicoll DF, (1982) J Phys Chem 86:2388; Briggs J, Dorshow RB, Bunton CA, Nicoll DF (1982) J Chem Phys 76:775; Dorshow R, Bunton CA, Nicoll DF (1983) J Phys Chem 87:1409CrossRefGoogle Scholar
  29. 29.
    Candau SJ, Hirsch E, Zana R (1984) J Phys (Paris) 45:149Google Scholar
  30. 30.
    Larsen JW, Tepley LB (1974) J Colloid Interface Sci 49:113; Zana R (1980) J Colloid Interface Sci 78:330CrossRefGoogle Scholar
  31. 31.
    Carnahan NF, Starling KF (1970) J Chem Phys 53:600CrossRefGoogle Scholar
  32. 32.
    Luckham PF, Klein J (1985) Macromolecules 18:721CrossRefGoogle Scholar
  33. 33.
    Parker JL, Richetti P, Kékicheff P, Sarman S (1992) Phys Rev Lett 68:1955CrossRefGoogle Scholar
  34. 34.
    Van Beurten VP, Vrij A (1981) J Chem Phys 74:2744CrossRefGoogle Scholar
  35. 35.
    Cockbain EG (1952) Trans Faraday Soc 48:185; Higuchi W, Okada R, Lemberger A (1962) J Pharm Sci 51:683; Becher P (1965) In: Emulsions; Theory and Practice. Rheinhold: New YorkCrossRefGoogle Scholar
  36. 36.
    Fairhurst D, Aronson MP, Gum ML, Goddard ED (1983) Colloids Surf 7:153; Aronson MP (1989) Langmuir 5:494; Aronson MP (1991) In: Emulsions: A Fundamental and Practical Approach. NATO Advanced Research Workshop, Bergen, NorwayCrossRefGoogle Scholar
  37. 37.
    Bibette J, Roux D, Nallet F (1990) Phys Rev Lett 65:2470CrossRefGoogle Scholar
  38. 38.
    Ma C (1987) Colloids Surfaces 28:1CrossRefGoogle Scholar
  39. 39.
    Nikolov AD, Wasan DT (1989) J Colloid Interface Sci 133:1; Nikolov AD, Kralchevsky PA, Ivanov IB, Wasan DT (1989) ibid 133:13; Nikolov Ad, Wasan DT, Denkov ND, Kralchevsky PA, Ivanov IB (1990) Prog Colloid Polym Sci 82:87CrossRefGoogle Scholar
  40. 40.
    Bibette J, Roux D, Pouligny B (1992) J Phys II France 2:401CrossRefGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG 1992

Authors and Affiliations

  • P. Kékicheff
    • 1
  • P. Richetti
    • 2
    • 1
  1. 1.Department of Applied Mathematics, Research School of Physical SciencesAustralian National UniversityCanberraAustralia
  2. 2.Château BrivazacC.R.P.P.-C.N.R.S.PessacFrance

Personalised recommendations