Skip to main content

The standard picture of ionic micelles

  • Conference paper
  • First Online:

Part of the book series: Progress in Colloid & Polymer Science ((PROGCOLLOID,volume 70))

Abstract

A description of the state of amphiphilic molecules in ionic micelles is presented. This description is dubbed “the standard picture of ionic micelles” because the evidence supporting it is by now overwhelming.

A simple theoretical model for the packing of chains in amphiphilic aggregates is presented. The model is based on the standard picture. Aggregates are assumed to have symmetrical hydrophobic cores in which only the chains may exist. The model involves generating all possible internal bond sequences — trans, gauche + and gauche at each bond — of a single amphiphilic molecule. The probabilities of these different conformations are constrained in such a way that, when an ensemble average is taken over all conformations, the hydrophobic core of the aggregate is packed at liquid hydrocarbon density throughout. To a limited extent the chains may also exist outside the core, in which case they incur a hydrophobic free energy cost. The model accurately reproduces the static properties of a recent molecular dynamics simulation of a bilayer containing 128 chains. For spherical micelles the model is in good agreement with neutron diffraction experiments which measure the mean position and freedom of movement of the terminal methyl groups. It is in excellent agreement with NMR T 1 relaxation experiments from which an order parameter down the amphiphile chain can be deduced.

Evidence which has been claimed to invalidate the standard picture of ionic micelles is examined in detail and found wanting.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Flory PJ (1969) Statistical Mechanics of Chain Molecules. Wiley-Interscience, New York

    Google Scholar 

  2. Wennerström H, Lindman B, Söderman O, Drakenberg T, Rosenholm JB (1979) J Am Chem Soc 101:6860

    Article  Google Scholar 

  3. Walderhaug H, Söderman O, Stilbs P (1984) J Phys Chem 88:1655

    Article  CAS  Google Scholar 

  4. Schatzberg P (1963) J Phys Chem 67:776

    Article  CAS  Google Scholar 

  5. Büldt G, Gally HU, Seelig A, Seelig J, Zaccai G (1978) Nature Lond 271:182

    Article  Google Scholar 

  6. Dilger JP, Fisher LR, Haydon DA (1982) Chem Phys Lipids 30:159

    Article  CAS  Google Scholar 

  7. Wennerström H, Lindman B (1979) J Phys Chem 83:2931

    Article  Google Scholar 

  8. Tanford C (1980) The Hydrophobiic Effects: Formation of Micelles and Biological Membranes, 2nd ed. Wiley-Interscience, New York

    Google Scholar 

  9. Halle B, Carlström G (1981) J Phys Chem 85:2142

    Article  CAS  Google Scholar 

  10. Cabane B (1981) J Physique 42:847

    Article  CAS  Google Scholar 

  11. Bendedouch D, Chen S-H, Koehler WC (1983) J Phys Chem 87:153

    Article  CAS  Google Scholar 

  12. Cabane B, Duplessix R, Zemb T (1984) In: Surfactants in Solution, Vol 1, Mittal KL, Lindman B (eds) Plenum Press, New York, p 373–404

    Google Scholar 

  13. Vikingstad E, Høiland H (1978) J Colloid Interface Sci 64:510

    Article  Google Scholar 

  14. Kennedy GC, Keeler RN (1972) American Institute of Physics Handbook, Section 4d: Compressibility. McGraw-Hill Co

    Google Scholar 

  15. Dill KA, Flory PJ (1981) Proc Natl Acad Sci USA 78:676

    Article  CAS  Google Scholar 

  16. Dill KA (1982) J Phys Chem 86:1498

    Article  CAS  Google Scholar 

  17. Hartley GS (1936) Aqueous Solutions of Paraffin-Chain Salts: A Study in Micelle Formation. Hermann and Co, Paris

    Google Scholar 

  18. Fromherz P (1981) Ber Bunsenges Phys Chem 85:891

    CAS  Google Scholar 

  19. Gruen DWR (1981) J Colloid Interface Sci 84:281

    Article  CAS  Google Scholar 

  20. Gruen DWR, de Lacey EHB (1984) In: Surfactants in Solution, Vol 1, Mitt KL, Lindman B (eds). Plenum Press, New York, p 279–306

    Google Scholar 

  21. GDruen DWR (1985) J Phys Chem 89:146, 153

    Article  Google Scholar 

  22. Marcelja S (1974) Biochem Biophys Acta 367:165

    Article  CAS  Google Scholar 

  23. van der Ploeg P, Berendsen HJC (1983) Mol Phys 49:233

    Article  Google Scholar 

  24. Seelig J, Niederberger W (1974) Biochemistry 13:1585

    Article  CAS  Google Scholar 

  25. Gruen DWR (1980) Biochim Biophys Acta 595:161

    Article  CAS  Google Scholar 

  26. Flory PJ (1979) Faraday Discuss Chem Soc 68:14

    Article  Google Scholar 

  27. Yoon DY, Flory PJ (1978) J Chem Phys 69:2536

    Article  CAS  Google Scholar 

  28. Vacatello M, Avitabile G, Corradini P, Tuzi A (1980) J Chem Phys 73:548

    Article  CAS  Google Scholar 

  29. Jorgensen WL (1982) J Chem Phys 77:5757

    Article  CAS  Google Scholar 

  30. Jorgenson WL (1983) J Phys Chem 87:5304

    Article  Google Scholar 

  31. Weber TA (1979) J Chem Phys 70:4277

    Article  CAS  Google Scholar 

  32. Aniansson GEA (1978) J Phys Chem 82:2805

    Article  CAS  Google Scholar 

  33. Menger FM (1979) Acc Chem Res 12:111

    Article  CAS  Google Scholar 

  34. Menger FM, Doll DW (1984) J Am Chem Soc 106:1109

    Article  CAS  Google Scholar 

  35. De Mayo P, Sydnes LK (1980) J C S Chem Comm 994

    Google Scholar 

  36. Svens B, Rosenholm JB (1973) J Coll Interface Sci 44:495

    Article  CAS  Google Scholar 

  37. Frima R, Rosenholm JB (1982) Colloid Polym Sci 260:545

    Article  Google Scholar 

  38. Whitten DG, Russell JC, Foreman TK, Schmehl RH, Bonilha J, Braun AM, Sobol W (1982) In: Chemical Approaches to Understanding Enzyme Catalysis: Biomimetic Chemistry and Transition-State Analogs. Green BS, Ashani Y, Chipman D (eds). Elsevier, Amsterdam

    Google Scholar 

  39. Zachariasse KA, Van Phuc N, Konzakiewicz B (1981) J Phys Chem 85:2676

    Article  CAS  Google Scholar 

  40. Mukerjee P, Cardin JR, Desai NR (1977) In: Micellization, solubilization and microemulsions. Mittal KL (ed). Plenum Press, New York 1:241

    Google Scholar 

  41. Lindman B, Wennerström H, Gustavsson H, Kamenka N, Brun B (1980) Pure Appl Chem 52:1307

    Article  CAS  Google Scholar 

  42. Ganesh KN, Mitra P, Balasubrsamanian D (1984) In: Surfactants in Solution, vol 1, Mittal KL, Lindman B (eds). Plenum Press, New York, p 599–611

    Google Scholar 

  43. Hayter JB, Zemb T (1982) Chem Phys Lett 93:91

    Article  CAS  Google Scholar 

  44. Almgren M, Swarup S (1983) J Coll Interface Sci 91:256

    Article  CAS  Google Scholar 

  45. Tabony J (1984) Mol Phys 51:975

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

B Lindman G. Olofsson P. Stenius

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Dr. Dietrich Steinkopff Verlag GmbH & Co. KG

About this paper

Cite this paper

Gruen, D.W.R. (1985). The standard picture of ionic micelles. In: Lindman, B., Olofsson, G., Stenius, P. (eds) Surfactants, Adsorption, Surface Spectroscopy and Disperse Systems. Progress in Colloid & Polymer Science, vol 70. Steinkopff. https://doi.org/10.1007/BFb0114299

Download citation

  • DOI: https://doi.org/10.1007/BFb0114299

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-7985-0667-1

  • Online ISBN: 978-3-7985-1699-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics