Skip to main content

Simulation of binary liquid mixtures

Part I: Association and coagulation

  • Conference paper
  • First Online:
Frontiers in Colloid Science In Memoriam Professor Dr. Bun-ichi Tamamushi

Part of the book series: Progress in Colloid & Polymer Science ((PROGCOLLOID,volume 68))

  • 61 Accesses

Abstract

With the help of a computer program association and coagulation processes of binary liquid mixtures are simulated according to the Monte Carlo procedure. The program is based essentially on a two-dimensional lattice model where the potential energy of the particles are approximated by constant pair interaction energies. The kinetic energy is simulated by a Brownian motion. This Brownian motion is simulated by a site exchange process which is controlled by the environment of the particle. Extensive calculations have been performed for different mole fractions of the binary mixture and various interaction energies. As a result the time-dependence of the number of clusters formed (= interconnected areas of particles of the same kind) are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McDonald, I. R. and Singer, K. Q., Rev. Chem. Soc. 24, 238 (1970); Chem. Brit. 9, 54 (1973).

    Article  CAS  Google Scholar 

  2. Christen, H. and Eicke, H. F., J. Phys. Chem. 78, 1423 (1974).

    Article  CAS  Google Scholar 

  3. Binder, K. (edit.). “Monte Carlo Methods”, Topics Current Phys. Vol. 7, Springer, Berlin 1979.

    Google Scholar 

  4. Jensen, K. and Wirth, N., PASCAL User Manual and Report, Springer Verlag, Berlin 1975.

    Google Scholar 

  5. Pavlidis, T., Graphics and Image Processing, Springer Verlag, Berlin 1982.

    Google Scholar 

  6. Torstendahl, S., PASCAL Compiler; distrib. by DECUS.

    Google Scholar 

  7. Hildebrand, J. H., Prausnitz, J. M. and Scott, R.L., “Regular and Related Solutions”, van Nostrand Reinhold, New York 1970.

    Google Scholar 

  8. Guggenheim, E. A., Thermodynamics, North Holland, Amsterdam 1949.

    Google Scholar 

  9. Hildebrand, J. H., Nature 168, 868 (1951).

    Article  CAS  Google Scholar 

  10. Herzfeld, K. F. and Heitler, W. Z., Elektrochm. 31, 536 (1925); Heitler, W., Ann. Physik 80, 630 (1926).

    CAS  Google Scholar 

  11. Münster, A., in: “Physik d. Hochpolymeren”, Vol. II (H. A. Stuart, edit.), Springer, Berlin 1953.

    Google Scholar 

  12. v. Smoluchowskki, M., Physik, Z. 17, 557, 585 (1916), Z. Physik. Chem. 92, 129 (1918).

    Google Scholar 

  13. Müller, H., Kolloid-Z. 38, 1 (1926), Kolloid-Beih. 26, 257 (1928).

    Article  Google Scholar 

  14. Overbeek, J. Th. G., Colloid Science (H. R. Kruyt, edit.) Vol. I, Amsterdam 1952.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

M. Nakagaski K. Shinoda E. Matijević

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Dr. Dietrich Steinkopff Verlag GmbH & Co. KG

About this paper

Cite this paper

Christen, H., Eicke, HF. (1983). Simulation of binary liquid mixtures. In: Nakagaski, M., Shinoda, K., Matijević, E. (eds) Frontiers in Colloid Science In Memoriam Professor Dr. Bun-ichi Tamamushi. Progress in Colloid & Polymer Science, vol 68. Steinkopff. https://doi.org/10.1007/BFb0114140

Download citation

  • DOI: https://doi.org/10.1007/BFb0114140

  • Received:

  • Published:

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-7985-0637-4

  • Online ISBN: 978-3-7985-1703-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics