Low energy field theory

Part of the Lecture Notes in Physics book series (LNP, volume 346)


Yukawa Coupling Vertex Operator Heterotic String String Tension String Amplitude 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Scherk, “Zero slope limit of the dual resonance model”, Nucl. Phys. B31 (1971) 222.CrossRefADSMathSciNetGoogle Scholar
  2. [2]
    A. Neveu and J. Scherk, “Connection between Yang-Mills fields and dual models”, Nucl. Phys. B36 (1972) 155.CrossRefADSGoogle Scholar
  3. [3]
    T. Yoneya, “Connection of dual models to electrodynamics and gravidynamics”, Prog. Theor. Phys. 51 (1974) 1907.CrossRefADSGoogle Scholar
  4. [4]
    J. Scherk and J.H. Schwarz, “Dual models for non-hadrons”, Nucl. Phys. B81 (1974) 118.CrossRefADSGoogle Scholar
  5. [5]
    M.B. Green, J.H. Schwarz and L. Brink, “N=4 Yang-Mills and N=8 supergravity as the limit of string theories”, Nucl. Phys. B198 (1982) 474.CrossRefADSGoogle Scholar
  6. [6]
    D.J. Gross, J. Harvey, E. Martinec and R. Rohm, “Heterotic string”, Phys. Rev. Lett. 54 (1985) 502; “Heterotic string theory (I). The free heterotic string”, Nucl. Phys. B256 (1985) 253; “Heterotic string theory (II). The interacting heterotic string”, Nucl. Phys. B267 (1986) 75.CrossRefADSMathSciNetGoogle Scholar
  7. [7]
    N. Cai and C.A. Nuñez, “Heterotic string covariant amplitudes and low energy effective action”, Nucl. Phys. B287 (1987) 279.CrossRefADSGoogle Scholar
  8. [8]
    D. Gross and J. Sloan, “The quartic effective action for the heterotic string”, Nucl. Phys. B291 (1987) 41.CrossRefADSMathSciNetGoogle Scholar
  9. [9]
    D. Lüst, S. Theisen and G. Zoupanos, “Four-dimensional heterotic strings and conformal field theory”, Nucl. Phys. B296 (1988) 800.CrossRefADSGoogle Scholar
  10. [10]
    J. Lauer, D. Lüst and S. Theisen, “Four-dimensional supergravity from four-dimensional strings”, Nucl. Phys. B304 (1988) 236.CrossRefADSGoogle Scholar
  11. [11]
    S. Hamidi and C. Vafa, “Interactions on orbifolds”, Nucl. Phys. B279 (1987) 465.CrossRefADSMathSciNetGoogle Scholar
  12. [12]
    L. Dixon, D. Friedan, E. Martinec and S. Shenker, “The conformal field theory of orbifolds”, Nucl. Phys. B282 (1987) 13.CrossRefADSMathSciNetGoogle Scholar
  13. [13]
    E.S. Fradkin and A.A. Tseytlin, “Effective field theory from quantized strings”, Phys. Lett. 158B (1985) 316.ADSMathSciNetGoogle Scholar
  14. [14]
    C.G. Callan, D. Friedan, E. Martinec and M. Perry, “Strings in background fields”, Nucl. Phys. B262 (1985) 593.CrossRefADSMathSciNetGoogle Scholar
  15. [15]
    A. Sen, “Heterotic string in arbitrary background fields”, Phys. Rev. D32 (1985) 2102; “Equations of motion for the heterotic string theory from the conformal invariance of the sigma model”, Phys. Rev. Lett. 55 (1985) 1846.ADSGoogle Scholar

Copyright information

© Springer-Verlag 1989

Personalised recommendations