Bosonization of the fermionic string — Covariant lattices

Part of the Lecture Notes in Physics book series (LNP, volume 346)


Conjugacy Class Vertex Operator Ghost Number Massless Spinor Covariant Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. Friedan, E. Martinec and S. Shenker, “Covariant quantization of superstrings”, Phys. Lett. 160B (1985) 55; “Conformal invariance, supersymmetry and string theory”, Nucl. Phys. B271 (1986) 93.ADSMathSciNetGoogle Scholar
  2. [2]
    V.G. Knizhnik, “Covariant fermionic vertex in superstrings”, Phys. Lett. 160B (1985) 403.ADSMathSciNetGoogle Scholar
  3. [3]
    J. Cohn, D. Friedan, Z. Qiu and S. Shenker, “Covariant quantization of superstring theories: the spinor field of the Ramond-Neveu-Schwarz model”, Nucl. Phys. B278 (1986) 577.CrossRefADSMathSciNetGoogle Scholar
  4. [4]
    W. Lerche and D. Lüst, “Covariant heterotic strings and odd selfdual lattices”, Phys. Lett. 187B (1987) 45.ADSGoogle Scholar
  5. [5]
    W. Lerche, D. Lüst and A.N. Schellekens, “Ten-dimensional heterotic strings from Niemeier lattices”, Phys. Lett. B181 (1986) 71; Erratum Phys. Lett. B184 (1987) 419.ADSGoogle Scholar
  6. [6]
    W. Lerche, D. Lüst and A.N. Schellekens, “Chiral four-dimensional heterotic strings from self-dual lattices”, Nucl. Phys. B287 (1987) 477.CrossRefADSGoogle Scholar
  7. [7]
    D. Friedan, “Notes on string theory and two dimensional conformal field theory”, in proceedings of Workshop on ‘Unified String Theories', Santa Barbara 1985, eds. M. Green and D. Gross, World Scientific.Google Scholar

Copyright information

© Springer-Verlag 1989

Personalised recommendations