Skip to main content

Part of the book series: Structure and Bonding ((STRUCTURE,volume 85))

Abstract

In the last few years the sol-gel process has turned into an interesting and promising method of synthesizing materials for obtaining thin or thick films with definite functions. The techniques of film preparation such as dip and spin coating are simple and allow us to prepare coatings with smooth optical surfaces with controlled stoichiometry, structure and texture. In this paper we give an up to date overview of what has been achieved in the field of chromogenic materials such as anodic or cathodic electrochromic coatings, counter or ion storage electrodes, transparent electron conductors and ionic conductors to be used in electrochromic (EC) devices. We also review the sol-gel research in the related areas of photochromic, thermochromic and electrooptic sol-gel materials whose properties are essentially used to modulate the luminous or solar energy as well as sol-gel materials prepared in the form of nanoparticles proposed recently for the development of a new type of solar cell. Finally we stress the future developments in these fast growing fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8 References

  1. Lampert CM, Grandqvist CG (1990). In: Large-area chromogenics: materials and devices for transmittance control, SPIE IS4, 2, SPIE, Bellingham, Washington, USA

    Google Scholar 

  2. Lynam NR, Agrawal A (1990). In: Large-area chromogenics: materials and devices for transmittance control, SPIE IS4, 46, SPIE, Bellingham, Washington, USA

    Google Scholar 

  3. Cronin JP, Agrawal A (1994). In: Perspectives on glass science and technology. Symposium in honor of the 90th birthday of Prof. N. Kreidl, Triesenberg, Liechtenstein, to be published

    Google Scholar 

  4. Selkowitz SE, Lampert CM (1990). In: Large-area chromogenics: materials and devices for transmittance control, SPIE IS4, Optical Engineering Press, Bellingham, Washington, USA, 22

    Google Scholar 

  5. Selkowitz SC, Rubin M, Lee ES, Sullivan R (1994). In: Optical materials technology for energy efficiency and solar energy conversion XIII, SPIE 2255, 226, SPIE, Bellingham, Washington, USA

    Google Scholar 

  6. Reilly S, Arasteh D, Selkowitz SE (1991) Solar energy mater 1: 22

    Google Scholar 

  7. Agrawal M, Cronin JP, Zhang R (1992). In: Sol-gel optics II, SPIE, 1758, 300, SPIE, Bellingham, Washington, USA

    Google Scholar 

  8. Sullivan R, Lee ES, Papamichael K, Rubin M, Selkowitz S (1994). In: Optical materials technology for energy efficiency and solar energy conversion XIII, SPIE 2255, 443, SPIE, Bellingham, Washington, USA

    Google Scholar 

  9. Kraus T (1953) unpublished report (Balzers, Liechtenstein)

    Google Scholar 

  10. Deb SK (1969) Appl Opt Suppl 3: 192

    Google Scholar 

  11. Deb SK (1973) Phil Mag 27: 801

    CAS  Google Scholar 

  12. Inganäs O (1990). In: Large-area chromogenics: materials and devices for transmittance control, SPIE IS4, 328, SPIE, Bellingham, Washington, USA

    Google Scholar 

  13. Yang SC (1990). In: Large-area chromogenics: materials and devices for transmittance control SPIE IS4, 335, SPIE, Bellingham, Washington, USA

    Google Scholar 

  14. Grandqvist CG (1994) Solar energy materials and solar cells 32: 369

    Google Scholar 

  15. Czanderna AW, Lampert CA (1990) Solar Energy Research Institute SERT Golden, Col, USA TP 255-3637 U Category 316 DE 90000 334

    Google Scholar 

  16. Haas TE, Goldner RB (1990). In: Large-area chromogenics: materials and devices for transmittance control, SPIE IS 4, 170, SPIE, Bellingham, Washington, USA

    Google Scholar 

  17. Cronin JP, Tarico DJ, Tonazzi JCC, Agrawal A, Kennedy SR (1992). In: Sol-Gel Optics II, SPIE 1758, 343, SPIE, Bellingham, Washington, USA

    Google Scholar 

  18. Cronin JP, Tarico DJ, Tonazzi JCC, Agrawal A, Kennedy SR (1993) Solar energy materials and solar cells 29: 371

    Google Scholar 

  19. Chemseddine A, Morineau R, Livage J (1983) Solid State Ionics 9–10: 357

    Google Scholar 

  20. Xu G, Chen L (1988) Solid State Ionics 28–30: 1726

    Google Scholar 

  21. Judeinstein P, Livage J (1989) Materials Science and Engineering 133: 129

    Google Scholar 

  22. Yamamaka K (1981) Jpn J Applied Physics 20: 1307

    Google Scholar 

  23. Oi J, Kishimoto A, Kudo T (1992) J Solid State Chemistry 96: 13

    CAS  Google Scholar 

  24. Yamanaka K, Ohkawoto H, Kidon H, Kudo T (1986) Jpn J Applied Physics 25: 1420

    CAS  Google Scholar 

  25. Itoh K, Okamoto T, Wakita S, Niikura H, Murabayashi M (1991) Appl Organomet Chem 5: 295

    CAS  Google Scholar 

  26. Unuma H, Tonooka K, Suzuki Y, Furusaki T, Kodaira K, Matsushita T (1986) J Mat Lett 5: 1248

    CAS  Google Scholar 

  27. Takase A, Miyakawa K (1991) Jpn J Appl Phys Part 2 30: L1508

    Google Scholar 

  28. Bell JM, Green DC, Patterson A, Smith GB, MacDonald KA, Lee K, Kirkup LD, Cullen JD, West BO Apoccia L, Kenny MJ, Wilunski LS (1991) in: Opt. Mater. Technol. Energy Effic. Energy Convers. SPIE 1536, 29, SPIE, Bellingham, Washington, USA

    Google Scholar 

  29. Livage J (1992) Solid State Ionics 50: 307

    CAS  Google Scholar 

  30. Judeinstein P, Livage J (1991) J Mater Chem 1: 621

    CAS  Google Scholar 

  31. Craigen D, Mackintosh A, Hickman J, Colbow K (1986) J Electrochem Soc 133: 1529

    CAS  Google Scholar 

  32. Judeinstein P, Livage J (1990). In: Sol-Gel Optics — SPIE, Bellingham, Washington, USA, 1328, 344

    Google Scholar 

  33. Denesuk M, Cronin JP, Kennedy SR, Law KJ, Nielson GF, Uhlmann DR (1994). In: International Symposium on Optical materials technology for energy efficiency and solar energy conversion XIII, SPIE 2255, 52, SPIE Bellingham, Washington, USA

    Google Scholar 

  34. Joo SK, Raistrick JD, Huggins RA (1985) Solid State Ionics 17: 313

    CAS  Google Scholar 

  35. Göttsche J, Hinsch A, Wittwer P (1993) Solar Energy Materials and Solar Cells 31: 415

    Google Scholar 

  36. Yoshino T, Baba N, Yasuda K (1988) Nippon Kagaku Kaishi 9: 1525

    Google Scholar 

  37. Donnadieu A (1990) In: Large-Area Chromogenics: Materials and Devices for Transmittance Control, SPIE IS 4, 191, SPIE, Bellingham, Washington, USA

    Google Scholar 

  38. Wang B, Cheng J, Zhon W (1992) Huadong Huagong Xueynan Xuebao 18: 48

    CAS  Google Scholar 

  39. Moser FH, Lynam NR, US Patent (1989) 4, 855, 161

    Google Scholar 

  40. Stangar UL, Orel B, Grabec I, Ogoreve B, Kalcher K (1993) Solar Energy Materials and Solar Cells 31: 173

    Google Scholar 

  41. Orel ZC, Orel B (1994). In: Optical Materials Technology for Energy Efficiency and Solar Energy Conversion XIII, SPIE 2255, 285, SPIE, Bellingham, Washington, USA

    Google Scholar 

  42. Aegerter MA, LaSerra ER, Martins Rodrigues AC, Kordas G, Moore G, (1990). In: Sol-Gel Optics, SPIE 1328, 391 SPIE, Bellingham, Washington, USA

    Google Scholar 

  43. Baudry P, Rodriguez ACM, Aegerter MA, Bulhões LOS (1990) J Non Crystal Solids 121: 319

    CAS  Google Scholar 

  44. Macedo MA, Dall'Antonia LH, Aegerter MA (1992). In: Sol-Gel Optics II — SPIE 1758, 320, SPIE, Bellingham, Washington, USA

    Google Scholar 

  45. Tonazzi JCL, Valla B, Macedo MA, Baudry P, Aegerter MA (1990). In: Sol Gel Optics, SPIE 1328, 375, SPIE, Bellingham, Washington, USA

    Google Scholar 

  46. Macedo MA, Dall'Antonia LH, Valla B, Aegerter MA (1992) J Non-Cryst Solids 147/148: 792

    Google Scholar 

  47. Macedo MA, Aegerter MA (1994) J Sol-Gel Science and Technology 2: 667

    CAS  Google Scholar 

  48. Valla B, Tonazzi JCL, Macedo MA, Dall'Antonia LH, Aegerter MA, Leones MAB, Bulhões LOS (1991) in: Optical Materials Technology for Energy Efficiency and Solar Energy Conversion X, SPIE 1536, SPIE, Bellingham, Washington, USA

    Google Scholar 

  49. Kéomany D, Poinsignon C, Deroo D (1995) Solar Energy Material and Solar Cells, 36: 397

    Google Scholar 

  50. Macedo MA (1994) PhD Thesis University of São Paulo

    Google Scholar 

  51. Ottaviani M, Panero S, Morzilli S, Scrosati B, Lazzari M (1986) Solid State Ionics 20: 197

    CAS  Google Scholar 

  52. Sata Y, Fujiwara R, Shimizu I, Inoue E (1982) Jpn J Appl Phys 21: 1642

    Google Scholar 

  53. Doeuff S, Sanchez C (1989) C R Acad Sci Ser 2 309: 351

    Google Scholar 

  54. Nabavi M, Doeuff S, Sanchez C, Livage J (1989) Mater Sci Eng B3: 203

    CAS  Google Scholar 

  55. Ozer N, Chen DG, Simmons JH (1991) Ceram Trans Glasses Electron Appl 20: 253

    CAS  Google Scholar 

  56. Ozer N, Tepehan F, Bozkurt N (1992) Thin Solid Films 219: 193

    CAS  Google Scholar 

  57. Bell JM, Barczynska J, Evans LA, MacDonald KA, Wang J, Green DC, Smith GB (1994). In: Optical materials technology for energy efficiency and solar energy conversion XIII, SPIE 2255, 324, SPIE, Bellingham, Washington, USA

    Google Scholar 

  58. Hagfeld A, Vlachopoulos N, Gilbert S, Grätzel M (1994). In: Optical materials technology for energy efficiency and solar energy conversion XIII, SPIE 2255, 297, SPIE, Bellingham, Washington, USA

    Google Scholar 

  59. Stangar UL, Orel B, Hutchins MG (1994). In: Optical materials technology for energy efficiency and solar energy conversion XIII, SPIE 2255, SPIE, Bellingham, Washington, USA, 261

    Google Scholar 

  60. Orel B, Stangar UL, Hutchins MG, Kalcher K (1994) J Non Cryst Solids 175: 251

    CAS  Google Scholar 

  61. Reichman B, Bard AJ (1980) J Electrochem Soc 127: 241

    CAS  Google Scholar 

  62. Yu PC (1991) Thesis, Tufts University, Dept. of Chemistry

    Google Scholar 

  63. Gomes MAB, Bulhões LOS, Castro SC, Damião AJ (1990) J Electrochem Soc 137(10): 3067

    CAS  Google Scholar 

  64. Gomes MAB, Bulhões LOS (1990) Electrochim. Acta 35(4): 765

    CAS  Google Scholar 

  65. Alves MC (1989) MSc Thesis, Federal University of São Carlos (Brazil)

    Google Scholar 

  66. Lee RG, Crayston JA (1991) J Mater Chem 1: 381

    CAS  Google Scholar 

  67. Faria RC, Bulhões LOS (1994) J Electrochem Soc 141: L29

    Google Scholar 

  68. Avellaneda CO, Macedo MA, Aegerter MA (1994). In: Proc. 38o. Congresso Brasileiro de Cerâmica, 109 Blumenau, SC

    Google Scholar 

  69. Ozer N, Barreto R, Büyüklinanl T, Lampert C (to be published) Solar Energy Materials and Solar Cells

    Google Scholar 

  70. Aegerter MA (1991) Patent pending No WO 91/02282 (PCT/BR90/00006)

    Google Scholar 

  71. Avellaneda CO, Macedo MA, Florentino AO, Barros Filho DA, Rabelo AA, Aegerter MA (1994). In: Proc 2nd conference “Sociedade brasileira de pesquisadores nikkeis”, São Paulo, 17

    Google Scholar 

  72. Aegerter MA, Avellaneda CO (to be published). In: International Symposium on Sol-Gel Science and Technology, ACERS Pacific Coast Meeting, Los Angeles, USA

    Google Scholar 

  73. Avellaneda CO, Macedo MA, Florentino AO, Barros Filho DA, Aegerter MA (1994). In: Sol Gel Optics III, SPIE 2288, 422, Bellingham, Washington, USA

    Google Scholar 

  74. Avellaneda CO, Macedo MA, Florentino AO, Aegerter MA. In: Optical materials technology for energy efficiency and solar energy conversion XIII, SPIE 2255, 38, SPIE, Bellingham, Washington, USA

    Google Scholar 

  75. Cogan SF, Rauh RD, Plante TD, Nguyen NM, Westwood JD (1980). In: Physical electrochemistry division, The electrochemical society electrochromic materials, Pennington, New Jersey, 99

    Google Scholar 

  76. Talledo A, Andersson AM, Granqvist CG (1990) J Mater Res 5: 1253

    CAS  Google Scholar 

  77. Nabavi M, Sanchez C, Livage J (1991) Eur J Solid State Inorg Chem 28: 1173

    CAS  Google Scholar 

  78. Sanchez C (1992) Bol Soc Esp Ceram Vidrio 31: 191

    CAS  Google Scholar 

  79. Yoshino T, Baba N, Kouda Y (1987) Jpn J Appl Phys 26: 782

    CAS  Google Scholar 

  80. Desilvestro J, Haas O (1990) J Electrochem Soc 137: 50

    Google Scholar 

  81. Bach S, Pereira-Ramos JP, Baffier N, Messina R (1990) J Electrochem Soc 137: 1042

    CAS  Google Scholar 

  82. Pereira-Ramos JP, Messina R, Bach S, Baffier N (1990) Solid State Ionics 40–41: 970

    Google Scholar 

  83. Amarilla J-M, Casal B, Galvan J-C, Ruiz-Hitzky E (1992) Chem Mater 4: 62

    CAS  Google Scholar 

  84. Nagase K, Shimizu Y, Miura N, Yamazoe N (1993) J Ceram Soc Jpn 101: 1032

    CAS  Google Scholar 

  85. Hackwood S, Dayem AH, Beni A (1982) Phys Rev B 26: 471

    CAS  Google Scholar 

  86. Agrawal A, Habib HR, Agrawal RK, Cronin JP, Roberts DM, Popwich R-C, Lampert CM (1992) Thin Solid Films 221: 239

    CAS  Google Scholar 

  87. Svensson JSEM, Granqvist CG (1980) App Phys Lett 49: 1568

    Google Scholar 

  88. Lampert CM, Omstead TR, Yu PC (1985). In: SPIE, 562, 15, SPIE, Bellingham, Washington, USA

    Google Scholar 

  89. Miles MH, Stilwell DE, Hollins RA, Henry RA (1980). In: Physical electrochemistry division, The electrochemical society electrochromic materials, Pennington, New Jersey, 137

    Google Scholar 

  90. Gottesfeld S (1980) J Electrochem Soc 127: 272

    CAS  Google Scholar 

  91. Moser FH, Lynam NR (1990) US Patent, 4, 959, 247

    Google Scholar 

  92. Orel B, Macek M, Svege F, Kalcher K (1994) Thin Solid Films (in press)

    Google Scholar 

  93. Orel B, Macek M, Surca A (1994). In: Optical materials technology for energy efficiency and solar energy conversion XIII, SPIE 2255, 273, SPIE, Bellingham, Washington, USA

    Google Scholar 

  94. Olivi P, Pereira EC, Longo E, Varella JA, Bulhões LO (1993) J Electrochem Soc 140: L81

    Google Scholar 

  95. Chopra KL, Major S, Pandya DK (1983) Thin Solid Films 102: 1

    CAS  Google Scholar 

  96. Haacke G (1977) Ann Rev Mater Sci 7: 73

    CAS  Google Scholar 

  97. Lynam NR (1980). In: Physical electrochemistry division, the electrochemical society electrochromic materials, Pennington, New Jersey, 201

    Google Scholar 

  98. Arfsten NJ (1984) J Non-Cryst Solids 63: 243

    CAS  Google Scholar 

  99. Arfsten NJ, Kaufman R, Dislich H (1984). In: Ultrastructural processing of ceramics, glasses and composites, 189, Wiley Interscience Publishers, New York

    Google Scholar 

  100. Takahashi Y, Hayashi H, Dhya Y (1992). In: Better Ceramics Through Chemistry V, MRS 271, 401

    Google Scholar 

  101. Takahashi Y, Wada Y (1990) J Electrochem Soc 137: 267

    CAS  Google Scholar 

  102. Gonzalez-Oliver GJR, Kato I (1986) J Non-Cryst Solids 82: 400

    CAS  Google Scholar 

  103. Brinker CJ, Scherer GW (1990). In: Sol-gel science: the physics and chemistry of sol-gel processing, Academic Press (ed) San Diego, 787p

    Google Scholar 

  104. Brinker CJ, Hurd AJ, Frye GC, Ward KJ, Ashley CS (1990) J Non-Cryst Solids 121: 294

    CAS  Google Scholar 

  105. Tsunashima A, Yoshimizu H, Kodaira K, Shimada S, Matsushito F (1986) J Mater Sci 21: 2731

    CAS  Google Scholar 

  106. Hiratsuka RS, Pulcinelli SH, Santilli CV (1990) J Non-Cryst Solids 121: 76

    CAS  Google Scholar 

  107. Maddalena A, DalMaschio R, Diré S, Raccanelli A (1990) J Non-Cryst Solids 121: 365

    CAS  Google Scholar 

  108. Goodman FJ, Gregg SJ (1960) J Chem Soc 237: 1162

    Google Scholar 

  109. Giesekke EW, Gutowsky HS, Kirkov P, Laitineu HA (1967) Inorg Chem 6: 1269

    Google Scholar 

  110. Orel B, Stanger UL, Crnjak-Orel Z, Bakovec P, Kosec M (1994) J Non-Cryst Solids 167: 272

    CAS  Google Scholar 

  111. Cocco G, Enzo S (1987) Mater Chem Phys 17: 541

    CAS  Google Scholar 

  112. Pozarnsky GA, Wright L, McCormick AV (1994) J Sol-Gel Science and Technology 3: 57

    CAS  Google Scholar 

  113. Lynam NR, Moser FH, Hichwa BP (1987). In: SPIE, 130

    Google Scholar 

  114. Hajimoto Y, Matsushima M, Ogura S (1979) J Electron Mater 8: 301

    CAS  Google Scholar 

  115. Uchikawa K, Niwa T (1987) US Patent 4, 652, 090

    Google Scholar 

  116. Ling HC, Yang MF, Rhodes WW (1986). In: Science of ceramic chemical processing, John Wiley and Sons, 285

    Google Scholar 

  117. Ozer N, He Y, Lampert CM (1994). In: Optical materials technology for energy efficiency and solar energy conversion XIII, SPIE 2255, 456, SPIE, Bellingham, Washington, USA

    Google Scholar 

  118. Howe AT, Sheffield SH, Childs PE, Shilton MG (1980) Thin Solid Films 67: 415

    Google Scholar 

  119. Takahashi T, Tanase S, Yamamoto O (1980) J Appl Electrochem 10: 415

    CAS  Google Scholar 

  120. Charbouillot Y, Ravaine D, Armand M, Poinsignon C (1988) J Non-Crystal Solids 103: 325

    CAS  Google Scholar 

  121. Judeinstein P, Livage J, Zarndiansky A, Rose R (1988) Solid State Ionics 28–30: 1722

    Google Scholar 

  122. Sanchez JY, Denoyelle A, Poinsignon C (1993) Polym Adv Technol 4: 89

    Google Scholar 

  123. Huggins RA (1977) Electrochim Acta 22: 773

    CAS  Google Scholar 

  124. Goldner RB, Haas TE, Seward G, Wong KK, Norton P, Foley G, Berera G, Wei G, Schulz S, Chapman R (1988) Solid State Ionics 28–30: 1715

    Google Scholar 

  125. Oi T, Miyauchi K (1981) Mater Res Bull 16: 1281

    CAS  Google Scholar 

  126. Raistrick ID, Ho C, Huggins RA (1976) Mater Res Bull 11: 953

    CAS  Google Scholar 

  127. Klein LC (1988) Sol-Gel Technology for Thin Films, Fibers, Preforms, Electronics and Specialty Forms, Noyes Publications (ed) New Jersey, USA, 407p

    Google Scholar 

  128. Aegerter MA, Jafelicci M Jr., Souza DF, Zanotto ED (1989) Sol-Gel Science and Technology, World Scientific (ed) Singapore, 505p

    Google Scholar 

  129. Sakka S, Yoko T (1992). In: Chemistry, spectroscopy and applications of sol-gel glasses, Springer-Verlag Berlin, 89

    Google Scholar 

  130. Schmidt H (1992). In: Chemistry, spectroscopy and applications of sol-gel glasses, Springer-Verlag Berlin, 119

    Google Scholar 

  131. Agrawal A, Cronin JP, Zhang R (1993) Solar Energy Materials and Solar Cells 31: 9

    CAS  Google Scholar 

  132. Morineau R (1985) Vide, Couches Minces 40: 281

    CAS  Google Scholar 

  133. Uhlmann DR, Boulton JM, Teowee G, Weisenbach L, Zelinski BJ (1990). In: Sol-gel, SPIE 1328, 270, SPIE, Bellingham, Washington, USA

    Google Scholar 

  134. Livage J (1988) Chem Sci 28: 9

    CAS  Google Scholar 

  135. Habib MA, Glueck D (1989) Solar Energy Materials 18: 127

    CAS  Google Scholar 

  136. Göttsche J, Hinsch A, Wittwer V (1993). In: Large-area chromogenics: Materials and devices for transmittance control, SPIE IS4, 13, SPIE, Bellingham, Washington, USA

    Google Scholar 

  137. Nabavi M, Sanchez C (1990) C R Acad Sci Paris 310—série II: 117

    Google Scholar 

  138. Mehrotra RC (1988) J Non-Cryst Solids 100: 1

    CAS  Google Scholar 

  139. Atkinson A, Guppy RM (1991) J Mater Sci 26: 3869

    CAS  Google Scholar 

  140. Makishima A, Kubo H, Wada K, Kitami Y, Shimohira T (1986) J Am Ceram Soc 69: C127

    Google Scholar 

  141. Giuntini JC, Granier W, Zanchetta TV, Taha A (1990) J Mater Sci Lett 9: 1383

    CAS  Google Scholar 

  142. Grandqvist CG (1993) Sol State Ionics 60: 213

    Google Scholar 

  143. Zea Bermudes VD, Baril D, Sanchez JY, Armand M, Poinsignon C (1992). In: Optical materials technology for energy efficiency and solar energy conversion XI: Chromogenics for Smart Windows, SPIE 1728, 180, SPIE, Bellingham, Washington, USA

    Google Scholar 

  144. Tatsumisago M, Kishida K, Minami T (1993) Solid State Ionics 59: 171

    CAS  Google Scholar 

  145. Boilot JP, Colomban P (1988). In: Sol-gel technology for thin films, fibers, preforms, electronics and specialty shapes, Noyes Publications, 303

    Google Scholar 

  146. Klein LC, Ho SF, Szu SP, Greenblatt M (1991). In: Applications of Analytical Techniques to the Characterization of Materials, Plenum Press, New York, 101

    Google Scholar 

  147. Klein LC (1993). In: CNRS European sol-gel summer school, Château de Bierville, France, 147

    Google Scholar 

  148. Hayri EA (1989) J Non-Cryst Solids 94: 167

    Google Scholar 

  149. Smaihi M, Petit D, Gourbillean F, Chaput F, Boilot JP (1991) Solid State Ionics 48: 213

    CAS  Google Scholar 

  150. Bozano D, Aegerter MA (1994) Private Communication

    Google Scholar 

  151. Wang B, Szu S, Greenblatt M, Klein CC (1992) Chem Mater 4: 191

    CAS  Google Scholar 

  152. Wang B, Szu S, Greenblatt M, Klein LC (1992) Solid State Ionics 53/56: 1214

    Google Scholar 

  153. Kuwano J, Naito Y, Kato M (1987) Yogyo Kyo Kaishi 95: 176

    CAS  Google Scholar 

  154. Hayri EA, Greenblatt M (1987) J Non-Cryst Solids 94: 387

    CAS  Google Scholar 

  155. Wang B, Szu S, Greenblatt M, Klein CC (1991) Solid State Ionics 47: 297

    CAS  Google Scholar 

  156. Wang B, Szu S, Greenblatt M, Klein LC (1992). In: The physics of non-crystalline solids, 203, Taylor & Francis London

    Google Scholar 

  157. Wang B, Greenblatt M, Yan J, Wu Y (1994) J Sol-Gel Science and Technology 2: 323

    CAS  Google Scholar 

  158. Ogasawara T, Klein LC (1994) J Sol-Gel Science and Technology 2: 611

    CAS  Google Scholar 

  159. Trifonova V (1994) J Sol-Gel Science and Technology 2: 447

    CAS  Google Scholar 

  160. Judeinstein P, Titman J, Stamm M, Schmidt H (1994) Chem Mater 6: 127

    CAS  Google Scholar 

  161. Macedo MA, Dall'Antonia LH, Aegerter MA (1992). In: Smart Materials Fabrication and Materials for Micro-Electro-Mechanical Systems MRS, 276, 125

    Google Scholar 

  162. Oihshi T, Maekawa S, Kato A (1992) Jpn Kokai Tokkyo Koho JP 04 242226 A2 920828 Heisi

    Google Scholar 

  163. Takahashi T, Nomura S (1993) Jpn Kokai Tokkyo Koho JP 05 177757 A2 930720 Heisei

    Google Scholar 

  164. Kaufman VR, Levy D, Avnir D (1986) J Non-Cryst Solids 82: 103

    CAS  Google Scholar 

  165. Levy D, Avnir D (1988) J Phys Chem 92: 4734

    CAS  Google Scholar 

  166. Levy D, Sinhorn S, Avnir D (1989) J Non-Cryst Solids 113: 137

    CAS  Google Scholar 

  167. Matsui K, Moroboshi T, Yoshida S (1989). In: MRS Int Meet Adv Mat, 12, 203

    Google Scholar 

  168. Preston D, Pouxviel JC, Novison T, Kaska W, Dunn B, Zink JI (1990) J Phys Chem 94: 4167

    CAS  Google Scholar 

  169. Nogami M, Sugiura T (1993) Mat Sci Lett 12: 1544

    CAS  Google Scholar 

  170. Yamamaka SA, Zink JI, Dunn B (1992). In: Sol-Gel Optics II, SPIE, 372

    Google Scholar 

  171. Ueda M, Kim HB, Ikeda T, Ichimara K (1992) Chem Mater 4: 1229

    CAS  Google Scholar 

  172. Ueda M (1993) J Non-Cryst Solids 163: 125

    CAS  Google Scholar 

  173. Hou L, Mennig M, Schmidt H (1994). In: Optical materials technology for energy efficiency and solar energy conversion XIII, SPIE 2255, 26, SPIE, Bellingham, Washington, USA

    Google Scholar 

  174. Hou L, Hoffmann B, Mennig M, Schmidt H (1994) J Sol-Gel Science and Technology 2: 635

    CAS  Google Scholar 

  175. Judeinstein P (1994) J Sol-Gel Science and Technology 2: 147

    CAS  Google Scholar 

  176. Mennig M, Krug H, Fink-Straube C, Oliveira PW, Schmidt H (1992). In: Sol-Gel Optics II, SPIE 1758, 387, SPIE, Bellingham, Washington, USA

    Google Scholar 

  177. Adler M (1968) Rev Mod Phys 40: 714

    CAS  Google Scholar 

  178. Geffcken W (1939). In: Jenaer Glaswerk Schott and Gen., Jena (ed) 411 (GDR Patent, 736)

    Google Scholar 

  179. Schroeder H (1962) Opt Acta 9: 249

    CAS  Google Scholar 

  180. Schroeder H (1969) Phys Thin Films 5: 87

    CAS  Google Scholar 

  181. Potember RS, Speck KR (1990). In: Sol-Gel Optics, SPIE 1328, 364 SPIE, Bellingham, Washington, USA

    Google Scholar 

  182. Levy D, Serna CJ, Oton JM (1991) Mat Letters 10: 470

    CAS  Google Scholar 

  183. Oton JM, A. Serrano A, Serna CJ, Levy D (1991) Liq Cryst 10: 733

    CAS  Google Scholar 

  184. Levy D, Serna CJ, Serrano A, Vidal J, Oton JM (1992). In: Sol-Gel Optics II, SPIE 1758, 476 SPIE, Bellingham, Washington, USA

    Google Scholar 

  185. Levy D, Quintana X, Covadonga R, Otón JM (1985). In: Sol-Gel Optics III, SPIE 2288, 529, Bellingham, Washington, USA

    Google Scholar 

  186. Levy D, Serrano A, Otón JM (1994) J Sol-Gel Science and Technology 2: 803

    CAS  Google Scholar 

  187. Graetzel M (1993) MRS Bulletin XVII 10: 61

    Google Scholar 

  188. Graetzel M (1994) J Sol-Gel Science and Technology 2: 673

    CAS  Google Scholar 

  189. Barros Filho DA, Maĉedo MA, Florentino A, Aegerter MA (1994). In: Proc. Congresso Brasileiro de Cerâmica, Blumenau, SC, Brasil, p 80

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag

About this chapter

Cite this chapter

Aegerter, M.A. (1996). Sol-gel chromogenic materials and devices. In: Optical and Electronic Phenomena in Sol-Gel Glasses and Modern Application. Structure and Bonding, vol 85. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0111490

Download citation

  • DOI: https://doi.org/10.1007/BFb0111490

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60982-7

  • Online ISBN: 978-3-540-49750-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics