Advertisement

Stereospecificity in biology

Conference paper
Part of the Topics in Current Chemistry book series (TOPCURRCHEM, volume 48)

Keywords

Hydrogen Transfer Pyridine Nucleotide FEBS Letter Cold Spring Harbor Symposium Nicotinamide Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Popjack, G.: Stereospecificity of enzymic reactions. In: The enzymes, 3rd edit. (ed. P. D. Boyer), Vol. II, p. 115–215. New York: Academic Press 1970.Google Scholar
  2. 2).
    Bentley, R.: Molecular asymmetry in biology, Vol. I. New York: Academic Press 1969.Google Scholar
  3. 3).
    Bentley, R.: Molecular asymmetry in biology, Vol. II. New York: Academic Press 1970.Google Scholar
  4. 4).
    Arigoni, D., Eliel, E. L.: Chirality due to the presence of hydrogen isotopes at noncyclic positions. In: Topics in stereochemistry, Vol. IV, p. 127. New York: John Wiley and Sons 1969.CrossRefGoogle Scholar
  5. 5).
    Dunathan, H. C.: Stereochemical aspects of pyridoxal phosphate catalysis. Advan. Enzymol. 35, 79–134 (1971).Google Scholar
  6. 6).
    Hess, G. P., Rupley, J. A.: Structure and function of proteins. Ann. Rev. Biochem. 40, 1013–1043 (1971).CrossRefGoogle Scholar
  7. 7).
    Hanson, K.R.: Enzyme symmetry and enzyme stereospecificity. Ann. Rev. Plant Physiol. 23, 335–366 (1972).CrossRefGoogle Scholar
  8. 8).
    Dickerson, R. E.: X-ray studies of protein mechanisms. Ann. Rev. Biochem. 41, 815–842 (1972).CrossRefGoogle Scholar
  9. 9).
    Cold Spring Harbor Symposia on Quantitative Biology. Vol. 36, Structure and Function of Proteins at the Three-Dimensional Level, 1972.Google Scholar
  10. 10).
    Rose, I. A.: Enzymology of proton abstraction and transfer reactions. In: The enzymes, 3rd edit. (ed. P. D. Boyer), Vol. II, p. 281–333. New York: Academic Press 1970.Google Scholar
  11. 11).
    Rose, I. A.: Enzyme reaction stereospecificity: A critical review. CRC Critical Rev. Biochem. 1972, 33–57.Google Scholar
  12. 12).
    Korman, E. F., McLick, J.: Stereochemical reaction mechanism formulations for enzyme-catalyzed pyrophosphate hydrolysis, ATP hydrolysis, and ATP synthesis. Bioorganic Chem. 2, 179–190 (1973).CrossRefGoogle Scholar
  13. 13).
    Perutz, M. F.: X-ray analysis, structure and function of enzymes (The First Sir Hans Krebs Lecture). European J. Biochem. 8, 455–466 (1969).CrossRefGoogle Scholar
  14. 14).
    Perutz, M. F.: Stereochemistry of cooperative effects in haemoglobin. Nature 228, 726–739 (1970).CrossRefGoogle Scholar
  15. 15).
    Anfinsen, C. B.: The formation and stabilization of protein structure. Biochem. J. 128, 737–749 (1972).Google Scholar
  16. 16).
    Milstien, S., Cohen, S. A.: Rate acceleration by stereopopulation control: Models for enzyme action. Proc. Natl. Acad. Sci. U.S. 67, 1143–1147 (1970).CrossRefGoogle Scholar
  17. 16a).
    Ogston, A. G.: Interpretation of experiments on metabolic processes, using isotopic tracer elements. Nature 162, 963 (1948).Google Scholar
  18. 17).
    Palekar, A. G., Tate, S. S., Meister, A.: Rat liver aminomalonate decarboxylase. Identity with cytoplasmic serine hydroxymethylase and allothreonine aldolase. J. Biol. Chem. 248, 1158–1167 (1973).Google Scholar
  19. 17a).
    Westheimer, F. H., Fisher, H. F., Conn, E. E., Vennesland, B.: The enzymatic transfer of hydrogen from alcohol to DPN. J. Am. Chem. Soc. 73, 2403 (1951).CrossRefGoogle Scholar
  20. 17b).
    Fisher, H. F., Conn, E. E., Vennesland, B., Westheimer, F. H.: The enzymatic transfer of hydrogen I. The reaction catalyzed by alcohol dehydrogenase. J. Biol. Chem. 202, 687–697 (1953). Loewus, F. A., Ofner, P., Fisher, H. F., Westheimer, F. H., Vennesland, B.: The enzymatic transfer of hydrogen II. The reaction catalyzed by lactic dehydrogenase. J. Biol. Chem. 202, 699–704 (1953). Loewus, F. A., Westheimer, F. H., Vennesland, B.: Enzymatic synthesis of the enantiomorphs of ethanol-1-d. J. Am. Chem. Soc. 75, 5018–5023 (1953).Google Scholar
  21. 18).
    Hirschmann, H.: The structural basis for the differentiation of identical groups in asymmetric reactions. In: Essays in biochemistry (ed. S. Graff), p. 156. New York: John Wiley & Sons 1956.Google Scholar
  22. 19).
    Hirschmann, H., Hanson, K. R.: The differentiation of stereoheterotopic groups. European J. Biochem. 22, 301–309 (1971).CrossRefGoogle Scholar
  23. 20).
    Cahn, R. S., Ingold, C. K., Prelog, V.: Specification of molecular chirality. Angew. Chem. 78, 413–447 (1966). — Cahn, R. S., Ingold, C. K.: J. Chem. Soc. (London) 1951, 612. — Cahn, R. S., Ingold, C. K., Prelog, V.: Experientia 12, 81 (1956).CrossRefGoogle Scholar
  24. 21).
    Hanson, K. R.: Applications of the sequence rule. I. Naming the paired ligands g,g at a tetrahedral atom Xggij. II. Naming the two faces of a trigonal atom Yghi. J. Am. Chem. Soc. 88, 2731–2742 (1966).CrossRefGoogle Scholar
  25. 22).
    IUPAC 1968 Tentative Rules, Section E, Fundamental Stereochemistry. Reprinted in European J. Biochem. 18, 151–170 (1971).CrossRefGoogle Scholar
  26. 23).
    Biochemistry and Physiology of Visual Pigments, Bochum Symposium 1972 (ed. H. Langer). Berlin-Heidelberg-New York: Springer 1973.Google Scholar
  27. 24).
    Horwitz, J., Heller, J.: Photoselection and linear dichroism of retinals. A method for identification and measurement of various geometrical isomers. J. Biol. Chem. 248, 1051–1055 (1973).Google Scholar
  28. 25).
    Lipmann, F.: The relation between the direction and mechanism of polymerization (ed. P. N. Campbell and G. D. Greville), Vol. IV. Essays Biochem. 1968, 1–23.Google Scholar
  29. 26).
    Lipmann, F.: What do we know about protein synthesis? In: Gene expression and its regulation. New York: Plenum Publishing Corporation 1972.Google Scholar
  30. 27).
    Blundell, T., Dodson, G., Hodgkin, D., Mercola, D.: Insulin: the structure in the crystal and its reflection in chemistry and biology. Advan. Protein Chem. 26, 279–402 (1972).CrossRefGoogle Scholar
  31. 28).
    Beytia, E., Qureshi, A. A., Porter, J. W.: Squalene synthetase III: Mechanism of the reaction. J. Biol. Chem. 248, 1856–1867 (1973).Google Scholar
  32. 29).
    Christopher, J. P., Pistorius, E. K., Regnier, F. E., Axelrod, B.: Factors influencing the positional specificity of soy bean lipoxygenase. Biochim. Biophys. Acta 289, 82–87 (1972).Google Scholar
  33. 30).
    Hashimoto, H., Günther, H., Simon, H.: The stereochemistry of vinylacetyl-CoA-isomerase of Clostridium kluyveri. FEBS Letters 33, 81–83 (1973).CrossRefGoogle Scholar
  34. 31).
    Milborrow, B. V.: Stereochemical aspects of the formation of double bonds in abscisic acid. Biochem. J. 128, 1135–1146 (1972).Google Scholar
  35. 32).
    Tsai, Su-Chen, Steinberg, D., Avigan, J., Fales, H. M.: Studies on the stereo-specificity of mitochondrial oxidation of phytanic acid and of α-hydroxyphytanic acid. J. Biol. Chem. 248, 1091–1097 (1973).Google Scholar
  36. 33).
    Richards, J. B., Hemming, F. W.: Dolichols, ubiquinones, geranylgeraniol and farnesol as the major metabolites of mevalonate in Phytophthora cactorum. Biochem. J. 128, 1345–1352 (1972).Google Scholar
  37. 34).
    Egmond, M. R., Vliegenhart, J. F. G., Boldingh, J.: Stereospecificity of the hydrogen abstraction at carbon atom n-8 in the oxygenation of linoleic acid by lipoxygenases from corn germs and soya beans. Biochem. Biophys. Res. Commun. 48, 1055–1060 (1972).CrossRefGoogle Scholar
  38. 35).
    Reed, L. J., Cox, D. J.: Multienzyme complexes. In: The enzymes, 3rd edit. (ed. P. D. Boyer), Vol. I, p. 213–240. New York-London: Academic Press 1970.Google Scholar
  39. 36).
    Lipmann, F., Gevers, W., Kleinkauf, H., Roskoski, R., Jr.: Polypeptide synthesis on protein templates: The enzymatic synthesis of Gramicidin S and tyrocidine (ed. A. Meister). Advan. Enzymol. 35, 1–34 (1971).Google Scholar
  40. 37).
    Seliger, H. H., McElroy, W. D., White, E. H., Field, G. F.: Stereospecificity and firefly bioluminescence, a comparison of natural and synthetic luciferins. Proc. Natl. Acad. Sci. U.S. 47, 1129–1134 (1961).CrossRefGoogle Scholar
  41. 38).
    White, E. H., McCapra, F., Field, G. F., McElroy, W. D.: The structure and synthesis of firefly luciferin. J. Am. Chem. Soc. 83, 2402–2403 (1961).CrossRefGoogle Scholar
  42. 38a).
    Cormier, M. J., Wampler, J. E., Hori, K.: Bioluminescence: Chemical aspects (ed. Herz, W., Grisebach, H. and Kirby, G. W.). Progr. Chem. Org. Nat. Prod. 30, 1–60 (1973).Google Scholar
  43. 39).
    Eggerer, H., Buckel, W., Lenz, H., Wunderwald, P., Gottschalk, G., Cornforth, J. W., Donninger, C., Mallaby, R., Redmond, J. W.: Stereochemistry of enzymic citrate synthesis and cleavage. Nature 226, 517–521 (1970).CrossRefGoogle Scholar
  44. 40).
    O'Brien, R. W., Stern, J. R.: Reversal of the stereospecificity of the citrate synthase of Clostridium kluyveri by p-chloromercuribenzoate. Biochem. Biophys. Res. Commun. 34, 271–276 (1969).CrossRefGoogle Scholar
  45. 41).
    Cardinale, G. J., Abeles, R. H.: Purification and mechanism of action of proline racemase. Biochemistry 7, 3970–3978 (1968).CrossRefGoogle Scholar
  46. 42).
    Kosicki, G. W., Westheimer, F. H.: Oxaloacetate decarboxylase from cod. Mechanism of action and stereoselective reduction of pyruvate by borohydride. Biochemistry 7, 4303–4309 (1968).CrossRefGoogle Scholar
  47. 43).
    Phillips, T. M., Kosicki, G. W., Schmidt, D. E., Jr.: Stereoselective reduction of pyruvate by sodium borohydride catalyzed by pyruvate kinase. Biochim. Biophys. Acta 293, 125–133 (1973).Google Scholar
  48. 44).
    Maxwell, E. S.: The enzymic interconversion of uridine diphosphogalactose and uridine diphosphoglucose. J. Biol. Chem. 229, 139–151 (1957).Google Scholar
  49. 45).
    Seyama, Y., Kalckar, H. M.: Specific tritium labeling of uridine diphosphogalactose 4-epimerase by D-1-3H Galactose. Biochemistry 11, 36–39 (1972).CrossRefGoogle Scholar
  50. 46).
    Seyama, Y., Kalckar, H. M.: Interaction between uridine diphosphate galactose and uridine diphosphate galactose 4-epimerase from Escherichia coli. Biochemistry 11, 40–44 (1972).CrossRefGoogle Scholar
  51. 47).
    Wee, T. G., Frey, P. A.: Studies on the mechanism of action of uridine diphosphate galactose 4-epimerase. Substate dependent reduction by sodium borohydride. J. Biol. Chem. 248, 33–40 (1973).Google Scholar
  52. 48).
    Maitra, U. S., Ankel, H.: The intermediate in the uridine diphosphate galactose 4-epimerase reaction. J. Biol. Chem. 248, 1477–1479 (1973).Google Scholar
  53. 49).
    Ketley, J. N., Schellenberg, K. A.: Substrate stereochemical requirements in the reductive inactivation of uridine diphosphate galactose 4-epimerase by sugar and 5′-uridine monophosphate. Biochemistry 12, 315–320 (1973).CrossRefGoogle Scholar
  54. 50).
    Eigen, M.: Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58, 465–523 (1971).CrossRefGoogle Scholar
  55. 51).
    Black, S.: A theory on the origin of life (ed. A. Meister). Advan. Enzymol. 38, 193–234 (1973).Google Scholar
  56. 52).
    Woese, C. R.: The genetic code. New York-Evanston-London: Harper and Row 1967Google Scholar
  57. 53).
    Crick, F. H. C.: The origin of the genetic code. J. Mol. Biol. 38, 367–379 (1968).CrossRefGoogle Scholar
  58. 54).
    Orgel, L. E.: Evolution of the genetic apparatus. J. Mol. Biol. 38, 381–393 (1968).CrossRefGoogle Scholar
  59. 55).
    Decker, P.: Evolution in open systems: Bistability and the origin of molecular asymmetry, Nature New Biology 241, 72–74 (1973).Google Scholar
  60. 56).
    Segal, H. L.: On the origin of stereospecificity in biological systems. FEBS Letters 20, 255–256 (1972).CrossRefGoogle Scholar
  61. 57).
    Lacey, J. C. Jr., Pruitt, K. M.: Origin of the genetic code. Nature 223, 799–804 (1969).CrossRefGoogle Scholar
  62. 58).
    Blow, D. M., Birktoft, J. J., Hartley, B. S.: Role of a buried acid group in the mechanism of action of chymotrypsin. Nature 221, 337–340 (1969).CrossRefGoogle Scholar
  63. 59).
    Hartley, B. S.: The Evolution of Enzymes. Plenary Lecture, Ninth International Congress of Biochemistry, Stockholm, Abstracts, 7 (1973).Google Scholar
  64. 60).
    Margoliash, E., Fitch, W. M., Dickerson, R. E.: Molecular expression of evolutionary phenomena in the primary and tertiary structures of cytochrome c. Brookhaven Symp. Biol. 21, 259 (1968).Google Scholar
  65. 61).
    Dickerson, R. E.: The structure of cytochrome c and the rates of molecular evolution. J. Mol. Evolution 1, 26–45 (1971).CrossRefGoogle Scholar
  66. 62).
    Dickerson, R. E., Takano, T., Eisenberg, D., Kallai, O. B., Samson, L., Cooper, A., Margoliash, E.: Ferricytochrome c. I. General features of the horse and bonito proteins at 2.8 A resolution. J. Biol. Chem. 246, 1511–1533 (1971).Google Scholar
  67. 63).
    Smith, L., Davies, H. C., Reichlin, M., Margoliash, E.: Separate oxidase and reductase reaction sites on cytochrome c demonstrated with purified site-specific antibodies. J. Biol. Chem. 248, 237–243 (1973).Google Scholar
  68. 64).
    Levy, H. R., Talalay, P., Vennesland, B.: The steric course of enzymatic reactions at meso carbon atoms: application of hydrogen isotopes. In: progress in stereochemistry (ed. de la Mare and Klyne), Vol. 3, p. 299–349. (London: Butterworths 1962.Google Scholar
  69. 65).
    Cornforth, J. W., Ryback, G., Popjack, G., Donninger, C., Schroepfer, G., Jr.: Stereochemistry of enzymic hydrogen transfer to pyridine nucleotides Biochem. Biophys. Res. Commun. 9, 371 (1962).CrossRefGoogle Scholar
  70. 66).
    Voet, J. G., Hindenlang, D. M., Blanck, T. J. J., Ulevitch, R. J., Kallen, R. G., Dunathan, H. C.: The stereochemistry of pyridoxal phosphate enzymes. The absolute stereochemistry of cofactor C′4 protonation in the transamination of holoserine hydroxymethylase by D-alanine. J. Biol. Chem. 248, 841–842 (1973).Google Scholar
  71. 67).
    Pyridine nucleotide-dependent dehydrogenases (ed. H. Sund). Berlin-Heidelberg-New York: Springer 1970.Google Scholar
  72. 68).
    Harris, J. I.: The primary structure and activity of glyceraldehyde. 3-phosphate dehydrogenase, in Ref. 67, 57–70.Google Scholar
  73. 69).
    Adams, M. J., McPherson, A., Jr., Rossmann, M. G., Schevitz, R. W., Smiley, I. E., Wonacott, A. J.: Structure and mechanism of lactic dehydrogenase, in Ref. 67, 157–174.Google Scholar
  74. 70).
    Hung, H. C., Hoberman, H. D.: Influence of steric specificity on the rates of hydrogen exchange between substrates of NAD-coupled dehydrogenases. Biochem. Biophys. Res. Commun. 46, 399–405 (1972).CrossRefGoogle Scholar
  75. 71).
    Dugan, R. E., Porter, J. W.: Stereospecificity of the transfer of hydrogen from reduced nicotinamide adenine dinucleotide phosphate, in each of the two reductive steps catalyzed by β-hydroxy-β-methylglutaryl coenzyme A reductase. J. Biol. Chem. 246, 5361–5364 (1971).Google Scholar
  76. 72).
    Beedle, A. S., Munday, K. A., Wilton, D. C.: The stereochemistry of hydrogen transfer from NADPH catalyzed by 3-hydroxy-3-methylglutaryl-coenzyme A reductase from rat liver. European J. Biochem. 28, 151–155 (1972).CrossRefGoogle Scholar
  77. 73).
    Blattmann, P., Rétey, J.: Zur Wirkungsweise und Stereospezifität der Hydroxymethylglutaryl CoA-Reduktase. Hoppe-Seylers Z. Physiol. Chem. 352, 369–376 (1971).Google Scholar
  78. 74).
    Beedle, A. S., Munday, K. A., Wilton, D. C.: The stereochemistry of the reduction of mevaldic acid-coenzyme A hemithioacetal by rat liver 3-hydroxy-3-methylglutaryl coenzyme A-reductase. FEBS Letters 28, 13–15 (1972).CrossRefGoogle Scholar
  79. 75).
    Rétey, J., von Stetten, E., Coy, U., Lynen, F.: A probable intermediate in the enzymic reduction of 3-hydroxy-3-methylglutaryl coenzyme A. European J. Biochem. 15, 72–76 (1970).CrossRefGoogle Scholar
  80. 76).
    Seiler, M. P., Acklin, W., Arigoni, D.: Cited in Ref. 73..Google Scholar
  81. 77).
    Gang, H., Cederbaum, A. I., Rubin, E.: Stereospecificity of ethanol oxidation. Biochem. Biophys. Res. Commun. 54, 264–269 (1973).CrossRefGoogle Scholar
  82. 78).
    Gibb, W., Jeffery, J.: The steric course with respect to the reduced nicotin-amide-adenine dinucleotide of the reduction of 3-oxo steroids catalyzed by cortisone reductase. European J. Biochem. 34, 395–400 (1973).CrossRefGoogle Scholar
  83. 79).
    Betz, G., Warren, J. C.: Reaction mechanism and stereospecificity of 20 β-hydroxysteroid dehydrogenase. Arch. Biochem. Biophys. 128, 745–752 (1968).CrossRefGoogle Scholar
  84. 80).
    Gibb, W., Jeffery, J.: Relationships between the 3 α and 20 β-hydroxysteroid NAD-oxidoreductase activity of a crystalline-enzyme preparation. European J. Biochem. 23, 336–342 (1971).CrossRefGoogle Scholar
  85. 81).
    Gibb, W., Jeffery, J.: Reduction of the non-steroid adamantanone by crystalline preparations of cortisone reductase. Biochem. J. 126, 443 (1972).Google Scholar
  86. 82).
    Gibb, W., Jeffery, J.: Steric, chiral and conformational aspects of the 3-hydroxy-and 20-hydroxysteroid dehydrogenase activities of cortisone reductase preparations. Biochim. Biophys. Acta 268, 13–20 (1972).Google Scholar
  87. 83).
    Gibb, W., Jeffery, J.: 5α-dîhydrotestosterone sulfate and cortisone reductase. Biochim. Biophys. Acta 280, 646–651 (1972).Google Scholar
  88. 84).
    George, J. M., Orr, J. C., Renwick, A. G. C., Carter, P., Engel, L. L.: The stereochemistry of hydrogen transfer to NADP+ by enzymes acting upon stereoisometric substrates. Bioorganic Chem. 2, 140–144 (1973).CrossRefGoogle Scholar
  89. 85).
    Middleditch, L. E., Chung, A. E.: Pyridine nucleotide transhydrogenase from Azotobacter vinelandii cells: Stereospecificity of hydrogen transfer. Arch. Biochem. Biophys 146, 449–453 (1971).CrossRefGoogle Scholar
  90. 86).
    Schutzbach, J. S., Feingold, D. S.: Biosynthesis of uridine diphosphate D-xylose. IV. Mechanism of action of uridine diphosphoglucuronate carboxy-lyase. J. Biol. Chem. 245, 2476–2482 (1970).Google Scholar
  91. 87).
    Rose, I. A.: Stereochemistry of pyruvate kinase, pyruvate carboxylase, and malate enzyme reactions. J. Biol. Chem. 245, 6052–6056 (1970).Google Scholar
  92. 88).
    Biellmann, J.-F., Rosenheimer, N.: Dogfish lactate dehydrogenase: The stereochemistry of hydrogen transfer. FEBS Letters 34, 143–144 (1973).CrossRefGoogle Scholar
  93. 89).
    Davies, D. D., Teixeira, A., Kenworthy, P.: The stereospecificity of nicotin-amide-adenine dinucleotide-dependent oxido-reductases from plants. Biochem. J. 127, 335–343 (1972).Google Scholar
  94. 90).
    Krakow, G., Ludowieg, J., Mather, J. H., Normore, W. M., Tosi, L., Udaka, S., Vennesland, B.: Some stereospecificity studies with tritiated pyridine nucleotides. Biochemistry 2, 1009–1014 (1963).CrossRefGoogle Scholar
  95. 91).
    Biellmann, J.-F., Branlant, G., Olomucki, A.: Stereochemistry of the hydrogen transfer to the coenzyme by octopine dehydrogenase. FEBS Letters 32, 254–256 (1973).CrossRefGoogle Scholar
  96. 92).
    Fisher, H. F., Adija, D. L., Cross, D. G.: Dehydrogenase-reduced coenzyme difference spectra, their resolution and relationship to the stereospecificity of hydrogen transfer. Biochemistry 8, 4424–4430 (1969).CrossRefGoogle Scholar
  97. 93).
    Agranoff, B. W., Hajra, A. K.: The acyl dihydroxyacetone phosphate pathway for glycerolipid biosynthesis in mouse liver and Ehrlich ascites tumor cells. Proc. Natl. Acad. Sci. U.S. 68, 411–415 (1971).CrossRefGoogle Scholar
  98. 94).
    Alizade, M. A., Simon, H.: Studies on mechanism and compartmentation of the L-and D-lactate formation from L-malate and D-glucose by Leuconostoc mesenteroides. Hoppe-Seylers Z. Physiol. Chem. 354, 163–168 (1973).Google Scholar
  99. 95).
    Tolbert, N. E.: Microbodies-peroxisomes and glyoxysomes. Ann. Rev. Plant Physiol. 22, 45–74 (1971).CrossRefGoogle Scholar
  100. 96).
    Warburg, O., Gewitz, H.-S., Völker, W.: D, Milchsäure in Chlorella. Z. Naturforsch. 12b, 722–724 (1957).Google Scholar
  101. 97).
    Everse, J., Kaplan, N. O.: Lactate dehydrogenases: Structure and function (ed. A. Meister). Advan. Enzymol. 37, 61–134 (1973).Google Scholar
  102. 98).
    Adams, M. J., Ford, G. C., Koekoek, R., Lentz, P. J., Jun. McPherson, A., Jun., Rossmann, M. G., Smiley, I. E., Schevitz, R. W., Wonacott, A. J.: Structure of lactate dehydrogenase at 2.8 A resolution. Nature 227, 1098–1103 (1970).CrossRefGoogle Scholar
  103. 99).
    Adams, M. J., Buehner, M., Chandrasekhar, K., Ford, G. C., Hackert, M. L., Liljas, A., Rossmann, M. G., Smiley, I. A., Allison, W. S., Everse, J., Kaplan, N. O., Taylor, S. S.: Structure-function relationships in lactate dehydrogenase. Proc. Natl. Acad. Sci. U.S. 70, 1968–1972 (1973).CrossRefGoogle Scholar
  104. 100).
    Chilson, O. P., Costello, L. A., Kaplan, N. O.: Studies on the mechanism of hybridization of lactic dehydrogenases in vitro. Biochemistry 4, 271–281 (1965).CrossRefGoogle Scholar
  105. 101).
    Hill, E., Tsernoglou, D., Webb, L., Banaszak, L.: Polypeptide conformation of cytoplasmic malate dehydrogenase from an electron density map at 3.0 A resolution. J. Mol. Biol. 72, 577–591 (1972).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  1. 1.Forschungsstelle Vennesland der Max-Planck-GesellschaftBerlin-Dahlem

Personalised recommendations