Phytosiderophores structures and properties of mugineic acids and their metal complexes

  • Yukio Sugiura
  • Kyosuke Nomoto
Conference paper
Part of the Structure and Bonding book series (STRUCTURE, volume 58)


In graminaceous plants such as barley, oats, and wheat, novel iron-chelating amino acids are secreted from the roots. A typical example is mugineic acid. A phytosiderophore, mugineic acid significantly stimulates iron-uptake and chlorophyll synthesis in rice plants. Most microbial siderophores have hydroxamate or phenolate groups as Fe(III)-coordination donors, while phytosiderophores consist of carboxyl, amine, and hydroxyl groups as the ligand functional groups. The mugineic acid-Fe(III) complex and its structurally analogous Co(III) complex have been characterized by some spectroscopic and X-ray diffraction methods. The coordination of mugineic acid to Co(III) and Fe(III) ions involves the azetidine nitrogen, secondary amine nitrogen, both terminal carboxylate oxygens as basal planar donors, and the hydroxyl oxygen and intermediate carboxylate oxygen as axial donors in nearly octahedral configuration. The Mössbauer (ΔEQ = 0.24 and δ Fe = + 0.39 mm/sec) and ESR (g = 9.4, 4.51, 4.44, and 4.31) parameters of the mugineic acid-Fe(III) complex are characteristic of high-spin (S = 5/2) ferric type. Of special interest is the apparent high reduction potential (E1/2 = − 102 mV vs. NHE) of the mugineic acid-Fe(III) complex, as compared to those of the microbial hydroxamates and ferric enterobactin. The mechanism of iron-absorption and -transport in gramineous plants probably includes Fe(III)-solubilization by mugineic acid and reduction from the thermodynamically stable ferric mugineic acid complex (log K ML M = 18.1) to the weakly bound ferrous complex (log K ML M = 8.1).


Chlorophyll Synthesis Hydroxyl Oxygen Normal Hydrogen Electrode Methine Carbon Ferrous Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

XI. References

  1. 1.
    Snow, G. A.: Bacteriol. Rev. 34, 99 (1970)Google Scholar
  2. 2.
    Neilands, J. B.: Annu. Rev. Biochem. 50, 715 (1981)CrossRefGoogle Scholar
  3. 3.
    Leong, S. A., Neilands, J. B.: Arch. Biochem. Biophys. 218, 351 (1982)CrossRefGoogle Scholar
  4. 4.
    Brown, J. C., Holmes, R. H., Tiffin, L. O.: Soil. Sci. 86, 75 (1958)CrossRefGoogle Scholar
  5. 5.
    Brown, J. C.: Adv. Agron. 13, 329 (1961)Google Scholar
  6. 6.
    Krauskopf, K. B.: Micronutrients in Agriculture. Proc. of a Symposium. Madison, Wisc. (Mortvedt, J. J., Giordano, P. C., Lindsay, W. L., Eds.), Soil Sci. Soc. of America, Inc., 1972, pp. 7–40.Google Scholar
  7. 7.
    Oertli, J. C., Jacobson, L.: Plant Physiol. 35, 683 (1960)CrossRefGoogle Scholar
  8. 8.
    Wallace, A., Lunt, O. R.: Am. Soc. Hort. Sci. 75, 819 (1960)Google Scholar
  9. 9.
    Brown, J. C.: Bioinorganic Chemistry_II (Raymond, K. N., Ed.), Am. Chem. Soc. 1978, pp. 93–103Google Scholar
  10. 10.
    Takagi, S.: Soil. Sci. Plant Nutr. 22, 423 (1976)Google Scholar
  11. 11.
    Takemoto, T., Nomoto, K., Fushiya, S., Ouchi, R., Kusano, G., Hikino, H., Takagi, S., Matsuura, Y., Kakudo, M.: Proc. Japan Acad. 54B, 469 (1978)Google Scholar
  12. 12.
    Fushiya, S., Sato, Y., Nozoe, S., Nomoto, K., Takemoto, T., Takagi, S.: Tetrahedron Lett. 21, 3071 (1980)CrossRefGoogle Scholar
  13. 13.
    Nomoto, K., Yoshioka, H., Arima, M., Takemoto, T., Fushiya, S., Takagi, S.: Chimia 35, 249 (1981)Google Scholar
  14. 14.
    Nomoto, K., Ohfune, Y.: J. Syn. Org. Chem. Japan 40, 401 (1982)Google Scholar
  15. 15.
    Yamada, S., Kitagawa, T., Achiwa, A.: Tetrahedron Lett. 3007 (1967)Google Scholar
  16. 16.
    Koga, K., Wu. C. C., Yamada, A.: Chem. Pharm. Bull. (Tokyo) 20, 1282 (1972)Google Scholar
  17. 17.
    Taniguchi, M., Koga, K., Yamada, S.: ibid. 20, 1438 (1972)Google Scholar
  18. 18.
    Craig, J. C., Roy, S. K.: Tetrahedron 21, 1847 (1965)CrossRefGoogle Scholar
  19. 19.
    Fowden, L.: Biochem. J. 64, 323 (1956)Google Scholar
  20. 20.
    Noma, M., Noguchi, M., Tamaki, E.: Tetrahedron Lett. 2017 (1971)Google Scholar
  21. 21.
    Noma, M., Noguchi, M.: Phytochem. 15, 1701 (1976)CrossRefGoogle Scholar
  22. 22.
    Kristensen, I., Larsen, P. O., Sorensen, H.: ibid. 13, 2803 (1974)CrossRefGoogle Scholar
  23. 23.
    Kristensen, I., Larsen, P. O.: ibid. 13, 2791 (1974)CrossRefGoogle Scholar
  24. 24.
    Virtanen, A. I., Linko, P.: Acta Chem. Scand. 9, 551 (1955)Google Scholar
  25. 25.
    Virtanen, A. I.: Angew. Chem. 67, 619 (1955)CrossRefGoogle Scholar
  26. 26.
    Fowden, L.: Nature 176, 347 (1955)CrossRefGoogle Scholar
  27. 27.
    Fowden, L., Bryant, M.: Biochem. J. 70, 626 (1958)Google Scholar
  28. 28.
    Fowden, L.: Phytochem. 11, 2271 (1972)CrossRefGoogle Scholar
  29. 29.
    Sung, M.-L., Fowden, L.: ibid. 8, 2095 (1969)CrossRefGoogle Scholar
  30. 30.
    Budensinsky, M., Budzikiewicz, H., Prokazka, A., Ripperger, H., Romer, A., Scholz, G., Schreiber, K.: ibid. 19, 2295 (1980)CrossRefGoogle Scholar
  31. 31.
    Ohfune, Y., Tomita, M., Nomoto, K.: J. Am. Chem. Soc. 103, 2401 (1981)CrossRefGoogle Scholar
  32. 32.
    Collum, D. B., McDonald, J. H., III, Still, W. C.: ibid. 102, 2118 (1980)CrossRefGoogle Scholar
  33. 33.
    Borch, R. F., Bernstein, M. D., Durst, H. D.: ibid. 93, 2897 (1971)CrossRefGoogle Scholar
  34. 34.
    Ohfune, Y., Nomoto, K.: Chem. Lett. 827 (1981)Google Scholar
  35. 35.
    Mino, Y., Ishida, T., Ota, N., Inoue, M., Nomoto, K., Takemoto, T., Tanaka, H., Sugiura, Y.: J. Am. Chem. Soc. (in press)Google Scholar
  36. 36.
    Gustafson, R. L., Martell, A. E.: J. Phys. Chem. 67, 576 (1963)CrossRefGoogle Scholar
  37. 37.
    Sugiura, Y., Tanaka, H., Mino, Y., Ishida, T., Ota, N., Inoue, M., Nomoto, K., Yoshioka, H., Takemoto, T.: J. Am. Chem. Soc. 103, 6979 (1981)CrossRefGoogle Scholar
  38. 38.
    Mino, Y., Ishida, T., Ota, N., Inoue, M., Nomoto, K., Yoshioka, H., Takemoto, T., Sugiura, Y., Tanaka, H.: Inorg. Chem. 20, 3440 (1981)CrossRefGoogle Scholar
  39. 39.
    Wentworth, R. A. D., Piper, T. S.: ibid. 4, 709 (1965)CrossRefGoogle Scholar
  40. 40.
    Hunter, J. G., Vergnano, O.: Ann. Appl. Biol. 40, 761 (1953)CrossRefGoogle Scholar
  41. 41.
    Miyoshi, K., Sugiura, Y., Ishizu, K., Iitaka, Y., Nakamura, H.: J. Am. Chem. Soc. 102, 6130 (1980)CrossRefGoogle Scholar
  42. 42.
    Iwashita, T., Mino, Y., Naoki, H., Sugiura, Y., Nomoto, K.: Biochemistry (in press)Google Scholar
  43. 43.
    Karplus, M.: J. Am. Chem. Soc. 85, 2870 (1963)CrossRefGoogle Scholar
  44. 44.
    Harris, W. R., Carrano, C. J., Raymond, K. N.: ibid. 101, 2722 (1979)CrossRefGoogle Scholar
  45. 45.
    Lodge, J. S., Gaines, C. G., Arceneaux, J. E. L., Byers, B. R.: Biochem. Biophys. Res. Commun. 97, 1291 (1980)CrossRefGoogle Scholar
  46. 46.
    Cooper, S. R., McArdle, J. V., Raymond, K. N.: Proc. Natl. Acad. Sci. USA 75, 3551 (1978)CrossRefGoogle Scholar
  47. 47.
    Schwarzenbach, G., Schwarzenbach, K.: Helv. Chim. Acta 46, 1390 (1963)CrossRefGoogle Scholar
  48. 48.
    Harris, W. R., Weitl, F. L., Raymond, K. N.: J. Chem. Soc. Chem. Commun. 177 (1979)Google Scholar
  49. 49.
    Neilands, J. B.: Bioinorganic Chemistry-II (Raymond, K. N., Ed.), Am. Chem. Soc., 1977, pp. 3–32Google Scholar
  50. 50.
    Neilands, J. B., Peterson, T., Leony, S. A.: Inorganic Chemistry in Biology and Medicine (Martell, A. E., Ed.), Am. Chem. Soc., 1979, pp. 263–278Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Yukio Sugiura
    • 1
  • Kyosuke Nomoto
    • 2
  1. 1.Faculty of Pharmaceutical SciencesKyoto UniversityKyotoJapan
  2. 2.Suntory Institute for Bioorganic ResearchOsakaJapan

Personalised recommendations