Skip to main content

X-ray studies on biological membranes using synchrotron radiation

  • Conference paper
  • First Online:
Synchrotron Radiation in Chemistry and Biology I

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 145))

Abstract

Current views on the structure and function of biological membranes imply a great variety of dynamical aspects. These range from the dynamic phase behaviour of phospholipids and conformational variations of membrane proteins during membrane-associated processes, to the interactions between membranes in fusion and pore formation. The structural description of these processes, many of which imply the possibility of intermediate structures, calls for fast time-resolved diffraction methods, i.e. the cinematographic approach. The present article gives first an overview on the specific problems and the theories for their solution in X-ray diffraction on membranes, and then reviews the present possibilities of time-resolved structural studies using synchrotron radiation on phospholipid model systems and functional membranes (sarcoplasmic reticulum membrane). It is shown that such studies bear great promise in entering the millisecond time domain and bridging the existing gap between static structural information and the wealth of dynamic data derived from spectroscopic methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7 References

  1. Worthington CR (1973) X-ray diffraction studies on biological membranes, in: Current Topics in Bioenergetics, Vol. V (eds) Sanadi DR, Packer L, p. 1, New York, Academic Press

    Google Scholar 

  2. Shipley GG (1973) Recent X-ray diffraction studies of biological membranes and membrane components, in: Biological Membranes, Vol. II (eds) Chapman D, Wallach DFH, p. 1, London, Academic Press

    Google Scholar 

  3. Franks NP, Levine YK (1981) Low-angle X-ray diffraction, in: Membrane Spectroscopy (ed) Grell E, p. 437, Springer, Berlin

    Google Scholar 

  4. Blaurock AE (1982) Biochim. Biophys. Acta 650: 176

    Google Scholar 

  5. Blaurock AE (1975) J. Mol. Biol. 93: 139

    Article  PubMed  CAS  Google Scholar 

  6. Henderson R (1975) ibid. 93: 123

    Article  PubMed  CAS  Google Scholar 

  7. Kirschner DA, Kaspar DLD (1977) Diffraction studies of molecular oganization, in: Myelin (ed) Morele P, p. 154, New York, Plenum Press

    Google Scholar 

  8. Worthington CR (1973) Exp. Eye Res. 17: 487

    Article  PubMed  CAS  Google Scholar 

  9. Chabre M (1975) Biochim. Biophys. Acta 382: 322

    Article  PubMed  CAS  Google Scholar 

  10. Kreuz W (1972) Angew. Chem. (Int. Ed.) 11: 551

    Article  Google Scholar 

  11. Finean JB, Coleman R, Kuntton S, Limbrick AR, Thompson JE (1968) H. Gen. Physiol. 51: 19s

    Google Scholar 

  12. Dupont Y, Harrison SC, Hasselbach W (1973) Nature 244: 555

    Article  CAS  Google Scholar 

  13. Herbette L, Marquardt J, Scarpa A, Blasie JK (1977) Biophys. J. 20: 245

    PubMed  CAS  Google Scholar 

  14. Thomson JE, Coleman R, Finean JB (1968) Biochim. Biophys. Acta 150: 405

    Article  Google Scholar 

  15. Limbrick AR, Fineman JB (1970) J. Cell. Sci. 7: 373

    PubMed  CAS  Google Scholar 

  16. Wilkins MHF, Blaurock AE, Engelman DM (1971) Nature New Biol. 230: 72

    Article  PubMed  CAS  Google Scholar 

  17. Luzzati V (1968) X-ray diffraction studies of lipid-water systems, in: Biological Membranes, Vol. I (ed) Chapman D, p. 71, New York, Academic Press

    Google Scholar 

  18. Luzzati V, Tardieu A (1974) Ann. Rev. Phys. Chem. 79

    Google Scholar 

  19. Hauser H, Pascher I, Pearson RH, Sundell S (1981) Biochim. Biophys. Acta 650: 21

    PubMed  CAS  Google Scholar 

  20. Kratky O, Glatter O (1982) Small-Angle X-Ray Scattering, London, Academic Press

    Google Scholar 

  21. Kratky O, Laggner P (1987) X-ray small angle scattering, in: Meyers RA (ed) Encyclopedia of Physical Science and Technology, Vol. 14, p. 693, New York, Academic Press

    Google Scholar 

  22. Sardet C, Tardieu A, Luzzati V (1976) J. Mol. Biol. 105: 383

    Article  PubMed  CAS  Google Scholar 

  23. Beverley Osborne H, Sardet C, Michel-Villaz M, Chabre M (1978) ibid. 123: 177

    Article  Google Scholar 

  24. Le Maire M, Møller JV, Tardieu A (1981) ibid. 150: 273

    Article  PubMed  Google Scholar 

  25. Pachence JM, Edelman IS, Schoenborn BP (1987) J. Biol. Chem. 262: 702

    PubMed  CAS  Google Scholar 

  26. Deisenhofer J, Epp O, Mike K, Huber R, Michel M (1984) J. Mol. Biol. 180: 385

    Article  PubMed  CAS  Google Scholar 

  27. Sherwood D (1976) Crystals, X-Rays and Proteins, London, Longman

    Google Scholar 

  28. Alexander LE (1969) X-Ray Diffraction Methods in Polymer Science, New York, Wiley-Interscience

    Google Scholar 

  29. Kratky O, Porod G (1948) Acta Phys. Austriaca 2: 133

    CAS  Google Scholar 

  30. Porod G (1948) ibid. 2: 255

    Google Scholar 

  31. Hosemann R, Bagchi SN (1962) Direct Analysis of Diffraction by Matter, Amsterdam, North-Holland

    Google Scholar 

  32. Bradaczek H, Luger P (1978) Acta Cryst. A34: 681

    CAS  Google Scholar 

  33. Pape EH (1974) Biophys. J. 14: 284

    PubMed  CAS  Google Scholar 

  34. Pape EH, Kreuz W (1978) J. Appl. Cryst. 11: 421

    Article  CAS  Google Scholar 

  35. Glatter O, Hainisch B (1984) ibid. 17: 435

    Article  CAS  Google Scholar 

  36. Glatter O (1981) ibid. 14: 101

    Article  Google Scholar 

  37. King GI (1975) Acta Cryst. A31: 130

    Google Scholar 

  38. Mitsui T (1978) Adv. Biophys. 10: 97

    PubMed  CAS  Google Scholar 

  39. Blaurock AE (1971) J. Mol. Biol. 56: 35

    Article  PubMed  CAS  Google Scholar 

  40. Sayre D (1952) Acta Cryst. 5: 843

    Article  Google Scholar 

  41. Franks NP (1976) J. Mol. Biol. 100: 345

    Article  PubMed  CAS  Google Scholar 

  42. Franks NP, Arunchalam T, Caspi E (1978) Nature 276: 530

    Article  PubMed  CAS  Google Scholar 

  43. Lesslauer W, Blasie JK (1972) Biophys. J. 12: 175

    PubMed  CAS  Google Scholar 

  44. Moody MF (1974) ibid. 14: 697

    PubMed  CAS  Google Scholar 

  45. Zernike F, Prins JA (1927) Z. Physik 41: 184

    Article  Google Scholar 

  46. Kratky O (1933) Physik Z. 34: 482

    CAS  Google Scholar 

  47. Worthington CR (1986) Biophys. J. 49: 98

    CAS  PubMed  Google Scholar 

  48. Blaurock AE, Nelander JC (1976) J. Mol. Biol. 103: 421

    Article  PubMed  CAS  Google Scholar 

  49. Tardieu A, Luzzati V, Reman RC (1973) ibid. 75: 711

    Article  PubMed  CAS  Google Scholar 

  50. Janiak MJ, Small DM, Shipley GG (1976) Biochemistry 15: 4575

    Article  PubMed  CAS  Google Scholar 

  51. Abrahamsson S, Dahlén B, Löfgren H, Pascher I (1978) Progr. Chem. Fats other Lipids 16: 125

    Article  CAS  Google Scholar 

  52. Cullis P, De Kruijff B (1979) Biochim. Biophys. Acta 559: 393

    Google Scholar 

  53. De Kruijff B, Cullis P, Verkleij A, Hope MJ, Van Echteld CJA, Taraschi TF, Van Moogevast P, Killian JA, Rietveld A, Van Der Steen ATM Modulation of lipid polymorphism by lipid-protein interactions, in: “Progress in Protein-Lipid Interactions” Vol. I Watts A, De Pont JJHHM (eds) 1985 p. 89, Amsterdam, Elsevier

    Google Scholar 

  54. Caffrey M, Bilderback DM (1984) Biophys. J. 45: 627

    Article  PubMed  CAS  Google Scholar 

  55. Laggner P FEBS Advanced Course “Structure and Dynamics of Membrane Lipids” April 1984, Zeist, Holland; Symp. on “New Methods in X-Ray Absorption, Scattering and Diffraction for Applications in Structural Biology”, Aug. 1984, Bristol U.K. Chance B, Bartunik HD (eds) (1986) Academic Press, London

    Google Scholar 

  56. Inoko Y, Mitsui T (1978) J. Phys. Soc. Japan 6: 1918

    Google Scholar 

  57. Ruocco MJ, Shipley GG (1982) Biochim. Biophys. Acta 691: 309

    Article  CAS  Google Scholar 

  58. Tsong TY, Kanehisa MI (1977) Biochemistry 16: 2674

    Article  PubMed  CAS  Google Scholar 

  59. Gruenwald B (1982) Biochim. Biophys. Acta 687: 71

    Article  Google Scholar 

  60. Lentz RB, Freire E, Biltonen RL (1978) Biochemistry 17: 4475

    Article  PubMed  CAS  Google Scholar 

  61. Cho KC, Choy CL, Young K (1981) Biochim. Biophys. Acta 663: 14

    PubMed  CAS  Google Scholar 

  62. Stumpel J, Eibl H, Niksch A (1983) ibid. 727: 246

    Article  PubMed  CAS  Google Scholar 

  63. Gottlieb MH, Eanes ED (1974) Biophys. J. 14: 335

    PubMed  CAS  Google Scholar 

  64. Boulin C, Gabriel A, Hendrix J (1984) Research Report EMBL 1983, p. 135, EMBL Heidelberg

    Google Scholar 

  65. Bordas J, Mandelkow E In: Fast Methods in Physical Biochemistry and Cell Biology, Sha'afi RI, Fernandez SM (eds) (1983) p. 137, Elsevier, Amsterdam

    Google Scholar 

  66. Caffrey M (1985) Biochemistry 24: 4826

    Article  PubMed  CAS  Google Scholar 

  67. Rand RP, Chapman D, Larsson K (1975) Biophys. J. 15: 1117

    PubMed  CAS  Google Scholar 

  68. Kashchiev D (1984) Crystal Res. Technol. 19: 1413

    Article  Google Scholar 

  69. Wunderlich B (1976) Macromolecular Physics, Vol. 2, Crystal Nucleation, Growth, Annealing, p. 7, New York, Academic Press

    Google Scholar 

  70. Dr Kruijff B, Verkleij AJ, Van Echteld CJA, Gerritsen WC, Mombers C, Noordam PC, De Gier J (1979) Biochim. Biophys. Acta 555: 200

    Article  Google Scholar 

  71. Hui SW, Stewart TP, Boni LT (1983) Chem. Phys. Lipids 33: 113

    Article  PubMed  CAS  Google Scholar 

  72. Siegel CP (1984) Biophys. J. 45: 399

    PubMed  CAS  Google Scholar 

  73. Siegel DP (1986) ibid 49: 1155

    Article  PubMed  CAS  Google Scholar 

  74. Laggner P, Lohner K to appear in Chem. Phys. Lipids

    Google Scholar 

  75. Ranck J-L, Letellier L, Shechter E, Krop B, Pernod P, Tardieu A (1984) Biochemistry 23: 4955

    Article  PubMed  CAS  Google Scholar 

  76. Lucy JA Biomembrane fusion, in: Biological Membranes, Vol 4 Chapman D (ed) (1982) p. 367, Academic Press, London

    Google Scholar 

  77. Siegel DP Membrane-membrane interactions in lamellar-to-inverted hexagonal phase transitions, in: Membrane Fusion Sowers AE (ed) Plenum, New York; in the press

    Google Scholar 

  78. Ebashi S, Endo M, Ohtsuki IQ (1969) Rev. Biophys. 2: 351

    CAS  Google Scholar 

  79. Meissner G, Conner GE, Fleischer S (1973) Biochim. Biophys. Acta 298: 246

    Article  PubMed  CAS  Google Scholar 

  80. Herbette LG, De Floor P, Fleischer S, Pascalini D, Scarpa A, Blasie JK (1985) ibid. 817: 103

    Article  PubMed  CAS  Google Scholar 

  81. Pierce D, Scarpa A, Trentham DR, Tapp MR, Blasie JK (1983) Biophys. J. 44: 365

    PubMed  CAS  Google Scholar 

  82. McCray JA, Herbette LG, Kihava T, Trentham DR (1980) Proc. Natl. Acad. Sci. USA 77: 7237

    Article  PubMed  CAS  Google Scholar 

  83. Laggner P, Ludi H, Hasselbach W in preparation

    Google Scholar 

  84. Laggner P, Glatter O, Müller K, Kratky O, Kostner G, Holasek A (1977) Eur. J. Biochem. 77: 165

    Article  PubMed  CAS  Google Scholar 

  85. Blasie JK, Herbette LG, Pascolini D, Skita V, Pierce DH, Scarpa A (1985) Biophys. J. 48: 9

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

dedicated to Professor Otto Kratky on the occasion of his eightyfifth birthday.

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag

About this paper

Cite this paper

Laggner, P. (1988). X-ray studies on biological membranes using synchrotron radiation. In: Synchrotron Radiation in Chemistry and Biology I. Topics in Current Chemistry, vol 145. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0111240

Download citation

  • DOI: https://doi.org/10.1007/BFb0111240

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-18385-3

  • Online ISBN: 978-3-540-47935-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics