Advertisement

Experimental evidence regarding the influence of surface charge on the bridging flocculation mechanism

  • A. Schmitt
  • A. Fernández-Barbero
  • M. Cabrerizo-Vílchez
  • R. Hidalgo-Álvarez
Conference paper
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 104)

Abstract

In this work, the influence of particle surface charge density on the mechanism of bridging flocculation is studied. Different amount of bovine serum albumin (BSA) molecules were adsorbed onto the surface of two almost identical systems of polystyrene particles which differ only in their surface charge density. Flocculation was induced by adding a small amount of electrolyte to a dilute suspension. Single particle light scattering was used to monitor the flocculation processes. It was found that steric stabilisation does not prevent aggregation in all cases and at least some weak flocculation occurs. Nevertheless, it inhibits complete flocculation of the sample. The initial rate constants are obtained and it is shown that the constant kernel solution for Smoluchowski's system of rate equations cannot describe the flocculation processes. No clear evidence for bridging flocculation was found for the particles with low surface charge. For the higher charged particles, however, a pronounced maximum for the initial flocculation rate was measured at intermediate surface coverage. This finding gives clear evidence for bridging flocculation and that the particle surface charge indicater is a very important parameter for the formation of protein bridges between the particles.

Key words

Colloidal aggregation bridging flocculation single particle detection surface charge protein adsorption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dickinson E, Eriksson L (1991) Adv Colloid Interface Sci 34:1CrossRefGoogle Scholar
  2. 2.
    Gregory J (1989) Crit Rev Envir Control 19(3):185–230CrossRefGoogle Scholar
  3. 3.
    Fernández-Barbero A, Cabrerizo M, Martínez R, Hidalgo-Álvarez R (1993) Progr Colloid Polym Sci 93:269–272CrossRefGoogle Scholar
  4. 4.
    Ruehrwein RA, Ward A (1952) Soil Sci 73:485CrossRefGoogle Scholar
  5. 5.
    Smoluchowski MV (1917) Z Phys Chem 92:129Google Scholar
  6. 6.
    Drake RL (1972) In: Hidy GM, Brock JR (eds) Topics in Current Aerosol Research. Vol 3. Pergamon Press, New York, p 201Google Scholar
  7. 7.
    LaMer VK (1966) Disc Faraday Soc 42:248CrossRefGoogle Scholar
  8. 8.
    Molski A (1989) Colloid Polym Sci 267:371–375CrossRefGoogle Scholar
  9. 9.
    Hogg R (1984) J Colloid Interface Sci 102:232CrossRefGoogle Scholar
  10. 10.
    Ash SG, Clayfield EJ (1976) J Colloid Interface Sci 55:645CrossRefGoogle Scholar
  11. 11.
    Moudgil BM, Shah BD, Soto HS (1987) J Colloid Interface Sci 119:446CrossRefGoogle Scholar
  12. 12.
    Goodwin JW, Gearn JH, Ho CC, Ottewil RH (1974) Colloid Polym Sci 252:464CrossRefGoogle Scholar
  13. 13.
    Fernández-Barbero A, Cabrerizo-Vílchez M, Martínez-García R, Hidalgo-Álvarez R (1996) Phys Rev E 53(5):4981–4989CrossRefGoogle Scholar
  14. 14.
    Fernández-Barbero A, Schmitt A, Cabrerizo-Vílchez M, Martínez-García R (1996) Physica A 230:53–74CrossRefGoogle Scholar
  15. 15.
    Elgersma AV, Zsom RLJ, Norde W, Lyklema J (1990) J Colloid Interface Sci 138:145–156CrossRefGoogle Scholar
  16. 16.
    Martín-Rodríguez A, Cabrerizo-Vílchez M, Hidalgo-Álvarez R (1994) Colloids Surf A: Physiochem Eng Aspects 92:113–119CrossRefGoogle Scholar

Copyright information

© Steinkopff Verlag 1997

Authors and Affiliations

  • A. Schmitt
    • 1
  • A. Fernández-Barbero
    • 2
  • M. Cabrerizo-Vílchez
    • 1
  • R. Hidalgo-Álvarez
    • 1
  1. 1.Grupo de Física de Fluidos y Biocoloides Departamento de Física AplicadaUniversidad de Granada Campus de FuentenuevaGranadaSpain
  2. 2.Grupo de Física de Fluidos Complejos Departamento de Física AplicadaAlmeríaSpain

Personalised recommendations