Advertisement

Suppression of multiple scattered light by photon cross-correlation in a 3D experiment

  • L. B. Aberle
  • S. Wiegand
  • W. Schröer
  • W. Staude
Conference paper
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 104)

Abstract

In strongly scattering media, the presence of multiple scattered light prevents the straight-forward interpretation of photon-auto correlation functions in terms of single scattering processes. In order to suppress the influence of multiple scattering Schätzel suggested a socalled 3-D cross-correlation technique. This technique operates by cross-correlating the intensities of the scattered light of two coherent laser beams illuminating the same scattering volume and so defining two scattering geometries. The cross-correlation function is identical to the auto-correlation function from single scattering if the scattering vector q is chosen to be identical for both scattering geometries. Based on this idea an experimental set-up has been developed, which appears to be a fairly simple modification of a conventional light scattering experiment. Test measurements with solutions of standard latex particles with a diameter of 109 nm at various concentrations show, that contributions due to multiple scattering are well suppressed even in the range of strong multiple scattering.

Key words

Dynamic light scattering multiple scattering cross-correlation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brown Wyn (ed) (1993) Dynamic Light Scattering. Clarondon Press, OxfordGoogle Scholar
  2. 2.
    Berne BJ, Pecora R (1976) Dynamic Light Scattering. Wiley, New YorkGoogle Scholar
  3. 3.
    Maret G, Wolf PE (1987) Z Phys B 65:409–416CrossRefGoogle Scholar
  4. 4.
    Pine DJ, Weitz DA, Chaikin PM, Herbolzheimer E (1988) Phys Rev Lett 60:1134–1137CrossRefGoogle Scholar
  5. 5.
    Weitz DA, Pine DJ (1993) In: Brown Wyn Ed, Dynamic Light Scattering. Clarandon Press, Oxford, pp 652–720Google Scholar
  6. 6.
    Boots HMJ, Bedeaux D, Mazur P (1975) Physica 79a:397–419Google Scholar
  7. 7.
    Lakoza EL, Chalyi AV (1983) Sov Phys Usp 26:573–590CrossRefGoogle Scholar
  8. 8.
    Fererel AF, Bhattacharyee J (1979) Phys Rev A19:348–369Google Scholar
  9. 9.
    Shanks JG, Sengers JV (1988) Phys Rev A 38:885–896CrossRefGoogle Scholar
  10. 10.
    Schätzel K (1991) J Mod Optics 38:1849–1865CrossRefGoogle Scholar
  11. 11.
    Phillies GDJ (1981) J Chem Phys 74:260–62CrossRefGoogle Scholar
  12. 12.
    Schätzel K, Drewel K, Ahrens K (1990) J Phys.: Condens Matter 2:SA393–398CrossRefGoogle Scholar
  13. 13.
    Drewel M, Ahrens J, Podschus U (1990) J Opt Soc Am A 7:206–210CrossRefGoogle Scholar
  14. 14.
    Segrè PN, van Megen W, Pusey PN, Schätzel K, Peters W (1995) J Mod Opt 42:1929–1952CrossRefGoogle Scholar
  15. 15.
    Dhont JKG, De Kruif CG (1983) J Chem Phys 79:1658–1663CrossRefGoogle Scholar
  16. 16.
    Schmidt U (1990) PhD Thesis, BremenGoogle Scholar
  17. 17.
    Ricka J (1993) Applied Optics 32:2860–2875Google Scholar
  18. 18.
    Weast RC ed (1978) CRC Handbook of Chemistry and Physics, 58th tir CRC Press, ClevelandGoogle Scholar

Copyright information

© Steinkopff Verlag 1997

Authors and Affiliations

  • L. B. Aberle
    • 1
  • S. Wiegand
    • 1
  • W. Schröer
    • 1
  • W. Staude
    • 2
  1. 1.Institut für Anorganische und Physikalische Chemie Fachbereich 2 Biologie-ChemieUniversität BremenBremenGermany
  2. 2.Institut für Experimental-PhysikUniversität BremenBremenGermany

Personalised recommendations