Advertisement

Spinodal decomposition of colloids in the intermediate stage

  • J. K. G. Dhont
Conference paper
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 104)

Abstract

Spinodal decomposition in the initial and intermediate stage is described on the basis of the Smoluchowski equation, “the Liouville equation for Brownian systems”. For the intermediate stage, where a dominant length scale exists, a general scaling relation for the static structure factor is derived: the scattered intensity divided by the cubed dominant length and the second moment of the intensity should be time independent. The corresponding dynamic scaling function is found from the non-linear equations of motion for the structure factor as derived from the Smoluchowski equation. It turns out that this dynamic scaling function is universal in the sense that it is independent of the kind of colloid and the quench parameters. The scaling function in the intermediate stage is much sharper than the well known Furukawa scaling function which applies to the late stage. The time dependence of the wavevector where the scattered intensity is maximum is found to follow power law behaviour, with an exponent in (0.2,1.1), depending on the relative importance of hydrodynamic interaction, which is set by the quench parameters.

Key words

Spinodal decomposition scaling light scattering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Furukawa H (1984) Physica A 123:497; (1985) Adv Phys 34:703CrossRefGoogle Scholar
  2. 2.
    Binder K, Stauffer D (1974) Phys Rev Lett 33:1006CrossRefGoogle Scholar
  3. 3.
    Lifshitz IM, Slyozov VV (1961) J Phys Chem Solids 19:35CrossRefGoogle Scholar
  4. 4.
    Wagner C (1961) Z Electrochem 65:581Google Scholar
  5. 5.
    Siggia ED (1979) Phys Rev A 20:595CrossRefGoogle Scholar
  6. 6.
    Murphy TJ, Aguirre JL (1972) J Chem Phys 57:2098CrossRefGoogle Scholar
  7. 7.
    Dhont JKG (1996) In: Möbius D, Miller R (eds) An Introduction to Dynamics of Colloids. Elsevier, AmsterdamGoogle Scholar
  8. 8.
    Cahn JW (1968) Trans Metall Soc AIME 242:166Google Scholar
  9. 9.
    Hilliard JE (1970) In: Aronson HI (ed) Phase Transformations, Ch 12. American Society for Metals. Metals Park, OhioGoogle Scholar
  10. 10.
    Dhont JKG, Duyndam AFH, Ackerson BJ (1992) Physica A 189:503CrossRefGoogle Scholar
  11. 11.
    Langer JS, Bar-on M, Miller HD (1975) Phys Rev A 11:1417CrossRefGoogle Scholar
  12. 12.
    Dhont JKG (1996) J Chem Phys 105:5112CrossRefGoogle Scholar
  13. 13.
    Furukawa H (1984) Physica A 123:497CrossRefGoogle Scholar
  14. 14.
    Yeung C (1988) Phys Rev Lett 61:1135CrossRefGoogle Scholar
  15. 14a.
    Koga T, Kawasaki K (1991) Phys Rev A 44:817; (1993) Physica A 196:389CrossRefGoogle Scholar
  16. 15.
    Mallamace F, Micali N, Trusso S, Chen SH (1995) Phys Rev E 51:5818CrossRefGoogle Scholar
  17. 16.
    Wiltzius P, Bates FS, Heffner WR (1988) Phys Rev Lett 60:1538CrossRefGoogle Scholar

Copyright information

© Steinkopff Verlag 1997

Authors and Affiliations

  • J. K. G. Dhont
    • 1
  1. 1.Van't Hoff LaboratoryUniversity of UtrechtCH UtrechtThe Netherlands

Personalised recommendations