Advertisement

Single-mode DLS: colloids in opaque porous media

  • J. Rička
  • I. Flammer
  • W. Leutz
Conference paper
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 104)

Abstract

Single-mode fiber optical receivers have become the instrumentation standard for Dynamic Light Scattering (DLS). In a regular homodyne experiment one values their superb signal-to-noise ratio as well as the simplicity of the optical setup. Moreover, mode-selective DLS enables the researcher to tackle seemingly hopeless experimental problems, such as colloidal motions inside an opaque porous medium consisting of a water filled packing of small glass grains. The particles to be measured are completely masked by strong diffuse scattering in the porous matrix. Nevertheless, mode-selective DLS makes it possible not only to detect the motions of the colloids within the pores but also to determine their diffusion coefficient and, simultaneously, their average convective speed. We outline the theoretical background of these measurements and present data on diffusion and convection of latex particles in dense packings of glass-beads in a Chromatographic column. Our technique allows an accurate determination of the tortuosity of the interstitial flow.

Key words

Single-mode dynamic light scattering opaque porous media diffusion convection tortuosity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bishop MT, Langley KH, Karasz FE (1986) Phys Rev Lett 57:1741–1744CrossRefGoogle Scholar
  2. 2.
    Pine DJ. Weitz DA, Maret G, Wolf PE, Herbolzheimer E, Chaikin PM (1989) Dynamical Correlations of Multiply Scattered Light. World Scientific, LondonGoogle Scholar
  3. 3.
    Pine DJ, Weitz DA, Zhu JX, Herbolzheimer E (1990) J Phys France 51:2101–2127CrossRefGoogle Scholar
  4. 4.
    Rička J (1994) Die Makromolekulare Chemie, Macromol Symp 79:45–55Google Scholar
  5. 5.
    Rička J (1993), Appl Opt 32:2860–2875Google Scholar
  6. 6.
    Gisler Th, Rüger H, Egelhaaf SU, Tschumi J, Schurtenberger P, Ricka J (1995) Appl Opt 34:3546–3553Google Scholar
  7. 7.
    Leutz W, Rička J (1996) Opt Comm 126:260–268CrossRefGoogle Scholar
  8. 8.
    Pusey PN (1989) Physica A 157:705–741CrossRefGoogle Scholar
  9. 9.
    Pusey PN (1994) Macromol Symp 79:17–30Google Scholar
  10. 10.
    Weitz DA, Pine DJ, Pusey PN, Tough RJA (1989) Phys Rev Lett 63:1747–1750CrossRefGoogle Scholar
  11. 11.
    Mason TG, Weitz DA (1995) Phys Rev Lett 74:1250–1253CrossRefGoogle Scholar
  12. 12.
    Leutz W, Maret G (1995) Physica B 204:14–19CrossRefGoogle Scholar
  13. 13.
    Schätzel K (1986) Appl Phys B 41:95–102CrossRefGoogle Scholar
  14. 14.
    Schaetzel K, Kalström K, Stampa B, Ahrens J (1989) J Opt Soc Amer B 6:937–947CrossRefGoogle Scholar
  15. 15.
    Charlaix E, Hulin JP, Plona TJ (1987) Phys Fluids 30:1690–1698CrossRefGoogle Scholar
  16. 16.
    Bear J (1988) Dynamics of Fluids in Porous Media. Dover, New YorkGoogle Scholar
  17. 17.
    Carman PC (1937) Trans Inst Chem Eng London 15:150–156Google Scholar

Copyright information

© Steinkopff Verlag 1997

Authors and Affiliations

  • J. Rička
    • 1
  • I. Flammer
    • 1
  • W. Leutz
    • 1
  1. 1.Institute of Applied PhysicsUniversity of BernBernSwitzerland

Personalised recommendations