Skip to main content

Stability tests for constrained linear systems

  • Conference paper
  • First Online:
Perspectives in robust control

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 268))

Abstract

This paper is yet another demonstration of the fact that enlarging the design space allows simpler tools to be used for analysis. It shows that several problems in linear systems theory can be solved by combining Lyapunov stability theory with Finsler’s Lemma. Using these results, the differential or difference equations that govern the behavior of the system can be seen as constraints. These dynamic constraints, which naturally involve the state derivative, are incorporated into the stability analysis conditions through the use of scalar or matrix Lagrange multipliers. No a priori use of the system equation is required to analyze stability. One practical consequence of these results is that they do not necessarily require a state space formulation. This has value in mechanical and electrical systems, where the inversion of the mass matrix introduces complicating nonlinearities in the parameters. The introduction of multipliers also simplify the derivation of robust stability tests, based on quadratic or parameter-dependent Lyapunov functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. R. Barmish. Necessary and sufficient conditions for quadratic stabilizability of an uncertain system. JOTA, 46:399–408, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  2. S. P. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia, PA, 1994.

    MATH  Google Scholar 

  3. D. Cobb. Controllability, observability, and duality in descriptor systems. IEEE Transactions on Automatic Control, 29:1076–1082, 1984.

    Article  MathSciNet  Google Scholar 

  4. M. C. de Oliveira, J. Bernussou, and J. C. Geromel. A new discrete-time robust stability condition. Systems & Control Letters, 37(4):261–265, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  5. M. C. de Oliveira, J. C. Geromel, and J. Bernussou. Extended H 2 and H norm characterizations and controller parametrizations for discrete-time systems. Submitted paper.

    Google Scholar 

  6. M. C. de Oliveira, J. C. Geromel, and J. Bernussou. An LMI optimization approach to multiobjective controller design for discrete-time systems. In Proceedings of the 38th IEEE Conference on Decision and Control, pages 3611–3616, Phoenix, AZ, 1999.

    Google Scholar 

  7. M. C. de Oliveira, J. C. Geromel, and L. Hsu. LMI characterization of structural and robust stability: the discrete-time case. Linear Algebra and Its Applications, 296(1–3):27–38, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  8. E. Feron, P. Apkarian, and P. Gahinet. Analysis and synthesis of robust control systems via parameter-dependent Lyapunov functions. IEEE Transactions on Automatic Control, 41(7):1041–1046, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  9. P. Finsler. Über das Vorkommen definiter und semidefiniter Formen in Scharen quadratischer Formem. Commentarii Mathematici Helvetici, 9:188–192, 1937.

    Article  MATH  Google Scholar 

  10. J. C. Geromel, M. C. de Oliveira, and J. Bernussou. Robust filtering of discrete-time linear systems with parameter dependent Lyapunov functions. In Proceedings of the 38th IEEE Conference on Decision and Control, pages 570–575, Phoenix, AZ, 1999.

    Google Scholar 

  11. J. C. Geromel, M. C. de Oliveira, and L. Hsu. LMI characterization of structural and robust stability. Linear Algebra and Its Applications, 285(1–3):69–80, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  12. K. M. Grigoriadis, G. Zhu, and R. E. Skelton. Optimal redesign of linear systems. Journal of Dynamic Systems Measurement and Control: transactions of the ASME, 118(3):598–605, 1996.

    MATH  Google Scholar 

  13. C. Hamburger. Two extensions to Finsler’s recurring theorem. Applied Mathematics & Optimization, 40:183–190, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  14. C. W. Scherer. Robust mixed control and linear parameter-varying control with full block scalings. In L. E. Gahoui and S.-L. Niculesco, editors, Advances in Linear Matrix Inequality Methods in Control, pages 187–207. SIAM, Philadelphia, PA, 2000.

    Google Scholar 

  15. D. D. Siljak. Decentralized Control of Complex Systems. Academic Press, London, UK, 1990.

    MATH  Google Scholar 

  16. R. E. Skelton. Dynamics Systems Control: linear systems analysis and synthesis. John Wiley & Sons, Inc, New York, NY, 1988.

    Google Scholar 

  17. R. E. Skelton, T. Iwasaki, and K. Grigoriadis. A Unified Algebraic Approach to Control Design. Taylor & Francis, London, UK, 1997.

    Google Scholar 

  18. V. L. Syrmos, C. T. Abdallah, P. Dorato, and K. Grigoriadis. Static output feedback — a survey. Automatica, 33(2), 1997.

    Google Scholar 

  19. F. Uhlig. A recurring theorem about pairs of quadratic forms and extensions: a survey. Linear Algebra and its Applications, 25:219–237, 1979.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

S.O. Reza Moheimani BSc, MengSc, PhD

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag London Limited

About this paper

Cite this paper

de Oliveira, M.C., Skelton, R.E. (2001). Stability tests for constrained linear systems. In: Moheimani, S.R. (eds) Perspectives in robust control. Lecture Notes in Control and Information Sciences, vol 268. Springer, London. https://doi.org/10.1007/BFb0110624

Download citation

  • DOI: https://doi.org/10.1007/BFb0110624

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-452-9

  • Online ISBN: 978-1-84628-576-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics