Skip to main content

Control of a reduced size model of US navy crane using only motor position sensors

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 259))

Abstract

Two control problems related to a particular underactuated mechanical system, the reduced size US Navy crane, are addressed. The open-loop motion planning problem is solved by showing that the model of the crane is differentially flat with a flat output comprising the coordinates of the load as its first components. The closed-loop global asymptotic stabilization of equilibria is achieved using an output feedback regulator of proportional-derivative type. The extension of this approach to tracking is analyzed based on simulation results.

Research supported by the Nonlinear Control Network, European Commission’s Training and Mobility of Researchers (TMR) Contract #ERBFMRX-CT970137 http://www.supelec.fr/lss/NCN/crane.html#PDP

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Corriga, A. Giua, and G. Usai. An implicit gain-scheduling controller for cranes. IEEE Transactions on Control Systems Technology, 6(1):15–20, January 1998.

    Article  Google Scholar 

  2. B. D'Andréa and J. Lévine. Modelling and nonlinear control of an overhead crane. In J.H. van Schuppen M.A. Kashoek and A.C.M. Ran, editors, Progress in Systems and Control Theory 4, Robust Control of Linear Systems and Nonlinear Control, Proc. MTNS'91, Vol. II, pages 523–529. Birkhäuser, 1990.

    Google Scholar 

  3. M. Fliess, J. Lévine, Ph. Martin, and P. Rouchon. Linéarisation par bouclage dynamique et transformations de Lie-Bäcklund. C.R. Acad. Sci. Paris, I-317:981–986, 1993.

    Google Scholar 

  4. M. Fliess, J. Lévine, Ph. Martin, and P. Rouchon. Flatness and defect of nonlinear systems: introductory theory and examples. International Journal of Control, 61(6):1327–1361, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  5. M. Fliess, J. Lévine, Ph. Martin, and P. Rouchon. A Lie-Bäcklund approach to equivalence and flatness of nonlinear systems. IEEE Transactions on Automatic Control, 38:700–716, 1999.

    Google Scholar 

  6. M. Fliess, J. Lévine, and P. Rouchon. A generalised state variable representation for a simplified crane description. International Journal of Control, 58:277–283, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  7. D. Fragopoulos, M.P. Spathopoulos, and Y. Zheng. A pendulation control system for offshore lifting operations. In Proceedings of the 14th IFAC Triennial World Congress, pages 465–470, Beijing, P.R. China, 1999.

    Google Scholar 

  8. T. Gustafsson. On the design and implementation of a rotary crane controller. European Journal of Control, 2(3):166–175, March 1996.

    MATH  Google Scholar 

  9. K.S. Hong, J.H. Kim, and K.I. Lee. Control of a container crane: Fast traversing, and residual sway control from the perspective of controlling an underactuated system. In Proceedings of the ACC, pages 1294–1298, Philadelphia, PA, June 1998.

    Google Scholar 

  10. B Kiss, J. Lévine, and Ph. Mullhaupt. Modeling and motion planning for a class of weight handling equipments. In Proceedings of the 14th International Conference on Systems Engineering, Coventry, UK, September 2000.

    Google Scholar 

  11. B Kiss, J. Lévine, and Ph. Mullhaupt. A simple output feedback PD controller for nonlinear cranes. submitted to: 39th IEEE Conference on Decision and Control, Sydney, Australia, December 2000.

    Google Scholar 

  12. J. La Salle and S. Lefschetz. Stability by Liapunov's Direct Method With Applications. Mathematics in Science and Engineering. Academic Press, New York, London, 1961.

    MATH  Google Scholar 

  13. J. Lévine. Are there new industrial perspectives in the control of mechanical systems? In Paul M. Frank, editor, Advances in Control, pages 195–226. Springer-Verlag, London, 1999.

    Google Scholar 

  14. J. Lévine, P. Rouchon, G. Yuan, C. Grebogi, B.R. Hunt, E. Kostelich, E. Ott, and J. Yorke. On the control of US Navy cranes. In Proceedings of the European Control Conference, pages 213–217, Brussels, Belgium, July 1997.

    Google Scholar 

  15. A. Marttinen, J. Virkkunen, and R.T. Salminen. Control study with a pilot crane. IEEE Trans. Edu., 33:298–305, 1990.

    Article  Google Scholar 

  16. R.H. Overton. Anti-sway control system for cantilever cranes. United States Patent, (5,526,946), June 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alberto Isidori Françoise Lamnabhi-Lagarrigue Witold Respondek

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag London Limited

About this paper

Cite this paper

Kiss, B., Lévine, J., Mullhaupt, P. (2001). Control of a reduced size model of US navy crane using only motor position sensors. In: Isidori, A., Lamnabhi-Lagarrigue, F., Respondek, W. (eds) Nonlinear control in the year 2000 volume 2. Lecture Notes in Control and Information Sciences, vol 259. Springer, London. https://doi.org/10.1007/BFb0110288

Download citation

  • DOI: https://doi.org/10.1007/BFb0110288

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-364-5

  • Online ISBN: 978-1-84628-569-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics