Advertisement

On sampled data variable structure control systems

  • Jian-Xin Xu
  • Feng Zheng
  • Tong Heng Lee
Chapter
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 247)

Abstract

It is shown that the motion of sampled-data variable structure control systems can be divided into three phases, namely reaching phase, switching phase and chattering phase. The definitions of the three phases are given and the characteristics of the three phases are described. It is shown that in the reaching phase the switching function decreases monotonically, and in the switching phase the switching function stops decreasing but the magnitude of position error decreases monotonically, while in the chattering phase all variables stop decreasing and the chattering is dominated by the velocity. The bound or limit values of corresponding variables are given.

Keywords

Slide Mode Control Switching Function High Order State Variable Structure Control Switching Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bartolini G., A. Ferrara and V. I. Utkin, “Adaptive sliding mode control in discrete-time systems”, Automatica, Vol.31, no.5, pp.769–773, 1995.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bartoszewicz, A., “Discrete-time quasi-sliding-mode control strategies”, IEEE Trans. on Industrial Electronics, Vol. IE-45, no.4, 633–637, 1998.CrossRefGoogle Scholar
  3. 3.
    Chen X. and T. Fukuda, “Computer-controlled continuous-time variable structure systems with sliding modes”, Int. J. Control, Vol.67, no.4, pp.619–639, 1997.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    DeCarlo R. A., S. H. Zak and G. P. Matthews, “Variable structure control of nonlinear multivariable systems: a tutorial”, Proc. IEEE, Vol.76, pp.212–232, 1988.CrossRefGoogle Scholar
  5. 5.
    Dogruel M., U. Ozguner and S. Drakunov, “Sliding-mode control in discrete-state and hybrid systems”, IEEE Trans. on Automatic Control, Vol.41, no.3, pp.414–419, 1996.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Dote, Y. and R. G. Hoft, “Microprocessor based sliding mode controller for de motor drives”, presented at the Ind. Applicat. Soc. Annual Meeting, Cincinnati, OH, 1980.Google Scholar
  7. 7.
    Furuta, K., “Sliding mode control of a discrete systems”, Systems & Control Letters, Vol.14, 145–152, 1990.zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Gao, W.B., Y. Wang, and A. Homaifa, “Discrete-time variable structure control systems”, IEEE Trans. on Industrial Electronics, Vol.IE-42, no.2, pp. 117–122, 1995.Google Scholar
  9. 9.
    Hung J. Y., W. B. Gao and J. C. Hung, “Variable structure control: a survey”, IEEE Trans. on Industrial Electronics, Vol.IE-40, no.1, pp.2–22, 1993.CrossRefGoogle Scholar
  10. 10.
    Kaynak, O. and A. Denker, “Discrete-time sliding mode control in the presence of system uncertainty”, Int. J. Control, Vol.57, no.5, pp.1171–1189, 1993.CrossRefMathSciNetGoogle Scholar
  11. 11.
    Kotta, U., “Comments on the stability of discrete-time sliding mode control systems”, IEEE Trans. on Automatic Control, Vol.34, pp.1021–1022, 1989.CrossRefGoogle Scholar
  12. 12.
    Milosavljevic, C., “General conditions for the existence of a quasisliding mode on the switching hyperplane in discrete variable structure systems”, Automat. Remote Control, Vol.46, pp.307–314, 1985.zbMATHGoogle Scholar
  13. 13.
    Sira-Ramirez, H., “Non-linear discrete variable structure systems in quasi-sliding mode”, Int. J. Control, Vol.54, no.5, pp.1171–1187, 1991.zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Sarpturk, S.Z., Istefanopulos, Y. and Kaynak, O., “On the stability of discrete-time sliding mode control systems”, TEEE Trans. on Automatic Control, Vol.32, no.10, pp.930–932, 1987.zbMATHCrossRefGoogle Scholar
  15. 15.
    Spurgeon, S.K., “Choice of discontinuous control component for robust sliding mode performance”, Int. J. Control, Vol.53, no.1, 163–179, 1991.zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Su, W. C., S. V. Drakunov, and U. Ozguner, Implementation of variable structure control for sampled-data systems, Proc. of the Workshop on Robust Control via Variable Structure and Lyapunov Techniques, pp. 166–173, Benevauro, Italy, 1994.Google Scholar
  17. 17.
    Takahashi, R. H. C., B. R. Menezes and B. J. Cardoso, A geometric approach to sampled data quasi-sliding modes analysis, in Proc. 30th Conf. on Decision and Control, Brighton, U.K., pp. 1379–1381, 1991.Google Scholar
  18. 18.
    Utkin, V.I., Variable structure systems with sliding mode, IEEE Trans. on Automatic Control, vol.22, no.2, pp.212–222, 1977.zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Utkin, V. I., Discontinuous control systems: state of the art in theory and applications, in Proc. IFAC 10th World Congress on Automatic Control, Munich, vol.1, pp.25–44, 1987.Google Scholar
  20. 20.
    Utkin, V. I. and S. V. Drakunov, On discrete-time sliding modes control, in Preprints IFAC Conf. on Nonlinear Control, Capri, Italy, pp.484–489, 1989.Google Scholar
  21. 21.
    Yu. X. and R. B. Potts, Analysis of discrete variable structure systems with pseudsliding modes, in Int. J. Systems Science, vol.23, pp503–516, 1992.zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Yu, X., Bifurcation and chaotic behaviors in a discrete variable structure system with unbounded control magnitude, International Journal of Bifurcation and Chans, vol.7, no.10, 1997.Google Scholar
  23. 23.
    Zheng, F., M. Cheng, and W. B. Gao, Variable Structure Control of Discrete-Time Stochastic Systems, Proc. 31st IEEE Conference on Decision and Control, pp.1830–1835, Tucson, Arizona, USA, December 16–18, 1992.Google Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • Jian-Xin Xu
    • 1
  • Feng Zheng
    • 1
  • Tong Heng Lee
    • 1
  1. 1.Department of Electrical EngineeringNational University of SingaporeSingapore

Personalised recommendations