Skip to main content

Entanglements in semi-dilute solutions as revealed by elongational flow studies

  • Transient Networks
  • Conference paper
  • First Online:
Permanent and Transient Networks

Part of the book series: Progress in Colloid & Polymer Science ((PROGCOLLOID,volume 75))

Abstract

Our methodology of chain stretching using elongational flow enables identification of circumstances in which macromolecules in solution extend cooperatively, in contrast to their extending in isolation. This opens a new window for the detection and study of entanglements. In addition to defining the concentration for the required degree of coil overlap, the present studies also define the time scale on which the geometric entanglement becomes mechanically effective, thus introducing a dynamic element to the identification and classification of entanglements. The entanglements develop through a sequence of patterns, periodic both in time and space with increasing strain rate. The strain patterns thus arising modify the flow field locally, assessed by velocimetry. Further, the macroscopic flow resistance (“elongational viscosity”) is determined and correlated with the various stages of chain stretching and network formation. These findings link molecular behaviour and macrorheology. Examples from engineering applications indicate how entanglements may help to account for the various flow modifying actions of polymeric additives, and conversely, how experience gained in engineering applications can potentially further the study of entanglements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Odell JA, Keller A, Miles MJ (1985) Polymer 26:1219

    Article  CAS  Google Scholar 

  2. Chow A, Keller A, Müller AJ, Odell JA (1987) Macromolecules, in press

    Google Scholar 

  3. Pope DP, Keller A (1978) Coll & Polym Sci 256:751

    Article  CAS  Google Scholar 

  4. Farrell CJ, Keller A, Miles MJ, Pope DP (1980) Polym 21:129

    Article  Google Scholar 

  5. Keller A, Odell JA (1985) Coll & Polym Sci 263:181

    Article  CAS  Google Scholar 

  6. Odell JA (1988) J Polym Sci, Polym Phys Ed, in press

    Google Scholar 

  7. Peterlin A (1966) J Polym Sci (B) 4:287

    Article  CAS  Google Scholar 

  8. De Gennes PG (1974) J Chem Phys 60:5030

    Article  Google Scholar 

  9. Brestkin YuV, Saddikov IS, Agranova SA, Baranov VG, Frenkel S (1986) Polym Bull 15:147

    Article  CAS  Google Scholar 

  10. Atkins EOT, Attwool PT, Miles MJ (1988) in preparation

    Google Scholar 

  11. Odell JA, Keller A, Miles MJ (1983) Polym Communications 24:7

    CAS  Google Scholar 

  12. Odell JA, Keller A (1986) J Polym Sci, Polym Phys 24:1889

    Article  CAS  Google Scholar 

  13. Odell JA, Keller A, Rabin Y (1988) J Chem Phys, in press

    Google Scholar 

  14. Odell JA, Atkins EOT, Keller A (1983) J Polym Sci Lett 21:289

    Article  CAS  Google Scholar 

  15. Odell JA, Keller A, Atkins EDT (1985) Macromolecules 18:1443

    Article  CAS  Google Scholar 

  16. Atkins EDT, Miyamato Y (1988) in preparation

    Google Scholar 

  17. Miles MJ, Tanaka K, Keller A (1983) Polymer 24:1081

    Article  CAS  Google Scholar 

  18. Martin JE (1984) Macromolecules 17:1279

    Article  CAS  Google Scholar 

  19. Leger L, Hervet H, Rondelez F (1981) Macromolecules 14:1732

    Article  CAS  Google Scholar 

  20. Cotton JP, Nierlich M, Bove F, Daoud M, Farnoux B, Janninck G, Dupplesix R, Picot CJ (1976) J Chem Phys 65:1101

    Article  CAS  Google Scholar 

  21. Flory PJ (ed) (1966) Principles of Polymer Chemistry, 5th Edition, Cornell University, Ithaca

    Google Scholar 

  22. Tan H, Moet A, Hiltner A, Baer E (1983) Macromolecules 16:28

    Article  CAS  Google Scholar 

  23. Odell JA (1988) in preparation

    Google Scholar 

  24. Farinato RS (1986) Abstract and Lecture, Bristol Conference, Flexibility of Macromolecules in Solution, Inst Physics, London

    Google Scholar 

  25. Gardner K, Pike ER, Miles MJ, Keller A, Tanaka K (1982) Polymer 23:1432

    Article  Google Scholar 

  26. Lyazid A, Scrivener O, Teitgen R (1980) In: Asterita G, Marruci G, Nicolais L (eds) Rheology, Plenum Pub Corp, New York, V2:141

    Google Scholar 

  27. Gampert B (ed) (1985) Proc IUTAM-Symposium, The influence of polymer additives on velocity and temperature fields, Essen, FRG, 26–28th June, 1984, Springer Berlin

    Google Scholar 

  28. Bird RB, Armstrong RQ, Hassager O (eds) (1977) Dynamics of polymeric liquids, Vol 1 and 2, John Wiley and Sons Inc, New York

    Google Scholar 

  29. Lumley JL (1969) Ann Rev Fluid Mech 1:367–384

    Article  CAS  Google Scholar 

  30. Odell JA, Tucker IM, Ferry M, Müller AJ (1988) in preparation

    Google Scholar 

  31. Haas R, Durst F (1982) Rheol Acta 21:150

    Article  CAS  Google Scholar 

  32. Durst F, Haas R, Kaczmar BU (1981) J Appl Polymer Sci 26:3125

    Article  CAS  Google Scholar 

  33. Chao KK, Child CA, Grens EA, Williams MC (1984) AIChEJ 30:111

    Article  CAS  Google Scholar 

  34. Keller A, Müller AJ, Odell JA (1988) Polymer, to be published

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Dr. Dietrich Steinkopff Verlag GmbH & Co. KG

About this paper

Cite this paper

Keller, A., Müller, A.J., Odell, J.A. (1987). Entanglements in semi-dilute solutions as revealed by elongational flow studies. In: Permanent and Transient Networks. Progress in Colloid & Polymer Science, vol 75. Steinkopff. https://doi.org/10.1007/BFb0109421

Download citation

  • DOI: https://doi.org/10.1007/BFb0109421

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Steinkopff

  • Print ISBN: 978-3-7985-0725-8

  • Online ISBN: 978-3-7985-1696-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics