Advertisement

Association of sodium ions to aqueous alkylsulfate and alkanoate micelles in the presence of 1-alcohols

  • S. Backhand
  • K. Rundt
  • K. Veggeland
  • H. Høiland
Conference paper
  • 1.2k Downloads
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 74)

Abstract

Electromotive force and conductivity measurements have been used to study the counter ion association to micelles of sodium dodecyl sulfate, sodium dodecanoate, and sodium octanoate. The conductivity and electromotive force measurements match very well as both is mainly a measure of the amount of free counter ions in the solutions. Addition of alcohols to these micellar solutions show some differences between octanoate micelles on one hand, and dodecyl sulfate and dodecanoate on the other. Propanol and pentanol addition lead to an increase in the sodium activity for dodecyl sulfate and dodecanoate solutions that are well above the c.m.c. while a decrease is observed for octanoate. Addition of higher alcohols show that the counter ion activity and the conductivity go through a maximum at low alcohol contents and then decreases. At high surfactant contents alcohol addition may induce a shape transition from small spherical micelles to larger rod- or disc-like micelles. It appears that the degree of counter ion association increases when these larger micelles form.

Key words

Micelles counter ion association shape transitions 1-alcohols sodium ion activity conductivity viscosity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wennerström H, Lindman B (1979) Phys Rep 52:1CrossRefGoogle Scholar
  2. 2.
    Lindman B, Wennerström H (1980) Topics Curr Chem 87:1Google Scholar
  3. 3.
    Lindman B, Wennerström H (1982) In: Mittal KL, Fendler EJ (eds) Solution Behavior of Surfactants, vol 1. Plenum Press, New York, p 3Google Scholar
  4. 4.
    Kamenka N, Fabre H, Chorro M, Lindman B (1977) J Chim Phys 74:510Google Scholar
  5. 5.
    Vikingstad E (1980) J Colloid Interface Sci 73:260CrossRefGoogle Scholar
  6. 6.
    Høiland H, Blokhus AM, Kvammen OJ, Backlund S (1985) J Colloid Interface Sci 107:576CrossRefGoogle Scholar
  7. 7.
    Høiland H, Kvammen OJ, Backlund S, Rundt K (1984) In: Mittal KL, Lindman B (eds) Surfactants in Solution, vol 2. Plenum Press, New York, p 949Google Scholar
  8. 8.
    Backlund S, Rundt K (1980) Acta Chem Scand A34:433CrossRefGoogle Scholar
  9. 9.
    Blokhus AM, Høiland H, Backlund S (1986) J Colloid Interface Sci 114:9CrossRefGoogle Scholar
  10. 10.
    Lawrence ASC, Pearson JT (1967) Trans Faraday Soc 63:495CrossRefGoogle Scholar
  11. 11.
    Tominaga T, Stem TB, Evans DF (1980) Bull Chem Soc Jpn 53:795CrossRefGoogle Scholar
  12. 12.
    Birdi KS, Backlund S, Sørensen K, Krag T, Dalsager S (1978) J Colloid Interface Sci 66:118CrossRefGoogle Scholar
  13. 13.
    Passinen K, Ekwall P (1956) Acta Chem Scand 10:215Google Scholar
  14. 14.
    Larsen JW, Magid LJ, Payton V (1973) Tetrahedron Lett 29:2663CrossRefGoogle Scholar
  15. 15.
    Clarke DE, Hall DG (1974) Colloid Polym Sci 252:153CrossRefGoogle Scholar
  16. 16.
    Hirsch E, Candau S, Zana R (1984) J Colloid Interface Sci 97:318CrossRefGoogle Scholar
  17. 17.
    Ljosland E, Blokhus AM, Veggeland K, Backlund S, Høiland H (1985) Progr Colloid Polym Sci 70:34Google Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG 1987

Authors and Affiliations

  • S. Backhand
    • 1
  • K. Rundt
    • 1
  • K. Veggeland
    • 2
  • H. Høiland
    • 2
  1. 1.Department of Physical ChemistryÅbo AkademiÅboFinland
  2. 2.Department of ChemistryBergen UniversityNorway

Personalised recommendations