Advertisement

Solubility and phase behaviour of ferric dodecyl benzene sulphonate in aqueous solutions

  • D. Težak
  • M. Čolić
  • V. Hrust
  • S. Popović
  • S. Prgomet
  • F. Strajnar
Conference paper
  • 1.2k Downloads
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 74)

Abstract

Precipitation processes, solubility and phase behaviour in aqueous solutions of ferric nitrate—dodecyl benzene sulphonic acid (HDBS)—nitric acid, were investigated in various pH regions. Precipitation diagrams were made using light scattering. The solubility product and the enthalpies of precipitation were calculated taking into account the hydrolytic constants of Fe+3, Fe(OH)+2, Fe(OH) 2 + species and the dissociation constant of HDBS. The solubility product of ferric dodecyl benzene sulphonate (Fe(DBS)3) was calculated to be K s 0 =(1.23±0.80)x10−24 for pH 2.2 at 293 K. The slope of the straight line from which the solubility product was calculated, (0.317) is close to the theoretical value for 3∶1 electrolyte.

Using a polarization microscope and X-ray diffraction different phases were characterized: the solid crystal, the lamellar liquid crystal and the mixtures of solid and liquid crystalline phases. The enthalpies of crystallization and liquid crystal formation were determined as ΔH=−33 kJ mol−1 and ΔH=23 kJ mol−1, respectively.

Key words

Phase behaviour liquid crystals solubility product 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Težak D, Strajnar F, Šarčević D, Milat O, Stubičar M (1984) Croat Chem Acta 57:93Google Scholar
  2. 2.
    Težak D, Strajnar F, Milat O, Stubičar M (1984) Progr Colloid Polym Sci 69:100Google Scholar
  3. 3.
    Matheson KL (1985) J Am Oil Chem Soc 62:1269CrossRefGoogle Scholar
  4. 4.
    Musić S, Vértes A, Simmons GW, Czako-Nagy I, Leidheiser H, Jr (1982) J Colloid Interface Sci 85:256CrossRefGoogle Scholar
  5. 5.
    Leidheiser H, Music S, McIntyre JF (1984) Corros Sci 24:197CrossRefGoogle Scholar
  6. 6.
    Milburn RM, Vosburgh WC (1955) J Am Chem Soc 77:1352CrossRefGoogle Scholar
  7. 7.
    Hödstrem BOA (1953) Ark Kemi 6:1Google Scholar
  8. 8.
    Dousma J, de Bruyn PL (1978) J Colloid Interface Sci 64:154CrossRefGoogle Scholar
  9. 9.
    Murphy PJ, Posner AM, Quirk JP (1976) J Colloid Interface Sci 56:312CrossRefGoogle Scholar
  10. 10.
    Dousma J, de Bruyn PL (1976) J Colloid Interface Sci 56:527CrossRefGoogle Scholar
  11. 11.
    Ćolić M (1985) BSc Thesis, ZagrebGoogle Scholar
  12. 12.
    Vogel AI (1961) A Textbook of Quantitative Inorganic Analysis, 3rd Edition, Longman, LondonGoogle Scholar
  13. 13.
    Težak B, Matijević E, Schulz K (1951) J Phys Colloid Chem 55:1558Google Scholar
  14. 14.
    Simeon VI, Ivičić N, Tkalčec M (1972) Z Phys Chem, Neue Folge 78:1Google Scholar
  15. 15.
    Sapieszko RS, Patel RC, Matijević E (1977) J Phys Chem 81:1061CrossRefGoogle Scholar
  16. 16.
    Matijević E, Janauer GE (1966) J Colloid Interface Sci 21:197CrossRefGoogle Scholar
  17. 17.
    Strahm U, Patel RC, Matijević E (1979) J Phys Chem 83:1689CrossRefGoogle Scholar
  18. 18.
    Matijević E, Scheiner P (1978) J Colloid Interface Sci 63:509CrossRefGoogle Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG 1987

Authors and Affiliations

  • D. Težak
    • 1
  • M. Čolić
    • 1
  • V. Hrust
    • 1
  • S. Popović
    • 1
    • 2
  • S. Prgomet
    • 1
  • F. Strajnar
    • 1
  1. 1.Department of Physical ChemistryFaculty of ScienceZagrebYugoslavia
  2. 2.Rugjer Bošković InstituteUniversity of ZagrebZagrebYugoslavia

Personalised recommendations