Advertisement

Migration of small hydrophobic molecules between micelles in aqueous solution

  • M. Almgren
  • J. Alsins
Conference paper
  • 1.2k Downloads
Part of the Progress in Colloid & Polymer Science book series (PROGCOLLOID, volume 74)

Abstract

Triplet energy transfer from 9-methylanthracene to azulene or guajazulene has been used to probe the migration of azulenes between micelles in aqueous solution. The migration of the hydrophobic solutes between small ionic and nonionic micelles had the temperature dependence expected for a process controlled by diffusion through the intermicellar solution, although the rate in some cases was substantially less than calculated from the Smoluchowski equation. Under conditions in which the micelles grow into large, probably rod-like structures, there are severe difficulties in separating the inter- and intramicellar deactivation processes. The intermicellar migration was enhanced under these conditions, in cetyltrimethylammonium surfactants on addition of chlorate ions, and in hexaethylene glycol dodecylether at temperatures approaching the cloud-point. The mechanism of this migration is discussed and compared with pertinent results from micelle relaxation kinetics and surfactant self-diffusion measurements.

Key words

Triplet energy transfer micelle solubilization kinetics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Almgren M, Grieser F, Thomas K (1979) J Am Chem Soc 101:279CrossRefGoogle Scholar
  2. 2.
    Lessner E, Teubner M, Kahlweit M (1981) J Phys Chem 85:3167CrossRefGoogle Scholar
  3. 3.
    Kahlweit M (1981) Pure Appl Chem 53:2069Google Scholar
  4. 4.
    Kahlweit M (1982) J Colloid Interface Sci 90:92CrossRefGoogle Scholar
  5. 5.
    Nilsson P-G, Wennerström H, Lindman B (1983) J Phys Chem 87:1377CrossRefGoogle Scholar
  6. 6.
    Malliaris A, Lang J, Zana R (1986) J Phys Chem 90:655CrossRefGoogle Scholar
  7. 7.
    Zana R, Weill C (1985) J Phys Lett 46:L–953Google Scholar
  8. 8.
    Infelta PP, Grätzel M, Thomas JK (1974) J Phys Chem 78:190CrossRefGoogle Scholar
  9. 9.
    Almgren M, Löfroth J-E, van Stam J (1986) J Phys Chem 90:4431CrossRefGoogle Scholar
  10. 10.
    Almgren M, Löfroth J-E (1981) J Colloid Interface Sci 81:486CrossRefGoogle Scholar
  11. 11.
    Malliaris A, Le Moigne J, Sturm J, Zana R (1985) J Phys Chem 89:2709CrossRefGoogle Scholar
  12. 12.
    Malliaris A, Lang J, Zana R (1986) J Chem Soc, Faraday Trans I 82:109CrossRefGoogle Scholar
  13. 13.
    Van der Auweraer M, Dederen J, Geladé E, De Schryver F (1980) J Phys Chem 74:1110Google Scholar
  14. 14.
    Sano H, Tachiya M (1981) J Phys Chem 75:2870CrossRefGoogle Scholar
  15. 15.
    Herrmann C-U, Kahlweit M (1980) J Phys Chem 84:1536CrossRefGoogle Scholar
  16. 16.
    Porte G, Appell J (1984) In: Mittal KL, Lindman B, eds. Surfactants in Solution. Plenum Press, New York, Vol 2, p 805Google Scholar
  17. 17.
    Bayer O, Hoffmann H, Ulbricht W, Thurn H (1986) Adv Colloid Interface Sci 26:177CrossRefGoogle Scholar
  18. 18.
    Almgren M, Löfroth JE (1982) J Chem Phys 76:2734CrossRefGoogle Scholar
  19. 19.
    Candau SJ, Hirsch E, Zana R (1985) J Colloidal Interface Sci 105:521CrossRefGoogle Scholar
  20. 20.
    Löfroth J-E, Almgren M (1984) In: Mittal KL, Lindman B, eds. Surfactants in Solution. Plenum Press, New York, Vol I, p 627Google Scholar

Copyright information

© Dr. Dietrich Steinkopff Verlag GmbH & Co. KG 1987

Authors and Affiliations

  • M. Almgren
    • 1
  • J. Alsins
    • 1
  1. 1.The Institute of Physical ChemistryUniversity of UppsalaUppsalaSweden

Personalised recommendations