Skip to main content

Experimentelle Untersuchungen zum Problem der heißen Elektronen in Halbleitern

  • Chapter
  • First Online:
Festkörperprobleme 1

Part of the book series: Advances in Solid State Physics ((ASSP,volume 1))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. I. Adawi, Lorentzian gas and hot electrons. Phys. Rev. 112, 1567 (1958).

    Article  MATH  ADS  Google Scholar 

  2. I. Adawi, Variational approach to deviations from Ohm’s law. Phys. Rev. 115, 1152 (1959).

    Article  ADS  MathSciNet  Google Scholar 

  3. I. Adawi, Variational treatment of warm electrons in nonpolar crystals. Phys. Rev. 120, 118 (1960).

    Article  MATH  ADS  Google Scholar 

  4. P. N. Argyres and E. N. Adams, Longitudinal magnetoresistance in the quantum limit. Phys. Rev. 104, 900 (1956).

    Article  MATH  ADS  Google Scholar 

  5. J. B. Arthur, A. F. Gibson, and J. W. Granville, The effect of high electric fields on the absorption of germanium at microwave frequencies. J. Electronics 2, 145 (1956).

    Article  Google Scholar 

  6. G. Ascarelli, Interaction of high-energy phonons in germanium. Phys. Rev. Letters 5, 367 (1960).

    Article  ADS  Google Scholar 

  7. G. M. Avak’yants, Concerning the properties of germanium in a strong electric field. Sov. Physics-Solid State 2, 744 (1960).

    Google Scholar 

  8. T. S. Benedict and W. Shockley, Microwave observations of the collision frequency of electrons in germanium. Phys. Rev. 89, 1152 (1953).

    Article  ADS  Google Scholar 

  9. F. Berz, On the theory of surface recombination in semiconductors for large potential differences between surface and bulk. Proc. Phys. Soc. 71, 275 (1958).

    Article  ADS  Google Scholar 

  10. J. Bok, Electrons chauds dans les semiconducteurs. Proc. Internat. Conf. Brussels 1958, 1, 475 (1960).

    Google Scholar 

  11. L. P. Bouckaert, R. Smoluchowski, and E. Wigner, Theory of Brillouin zones and symmetry properties of wave functions in crystals. Phys. Rev. 50, 58 (1936).

    Article  MATH  ADS  Google Scholar 

  12. R. Bray and D. M. Brown, Lattice scattering mechanisms in p-type germanium. Internat. Halbl. Konf. Prag 1960.

    Google Scholar 

  13. B. N. Brockhouse and P. K. Iyengar, Normal modes of germanium by neutron spectrometry. Phys. Rev. 111, 747 (1958).

    Article  ADS  Google Scholar 

  14. E. M. Conwell and V. F. Weisskopf, Theory of impurity scattering in semiconductors. Phys. Rev. 77, 388 (1950).

    Article  MATH  ADS  Google Scholar 

  15. E. M. Conwell, Lattice mobility of hot carriers. J. Phys. Chem. Solids 8, 234 (1959).

    Article  ADS  Google Scholar 

  16. E. M. Conwell and A. L. Brown, Scattering of hot carriers in germanium. J. Phys. Chem. Solids 15, 208 (1960).

    Article  ADS  Google Scholar 

  17. E. M. Conwell, High-frequency conductivity and dielectric constant vs electric field intensity in geramanium. Internat. Halbl. Konf. Prag 1960.

    Google Scholar 

  18. L. Chih-cha’o and D. N. Nasledov, Influence of the electric field on the electrical conductivity, hall-coefficient, and magnetoresistance of n-type InSb at low temperatures. Sov. Physics-Solid State 2, 729 (1960).

    Google Scholar 

  19. L. W. Davies and A. R. Storm, Recombination radiation from silicon under strong-field conditions. Phys. Rev. 121, 381 (1961).

    Article  ADS  Google Scholar 

  20. L. W. Davies, Hot electrons in semiconductors and their applications. Proc. IRE Australia 22, 151 (1961).

    Google Scholar 

  21. I. M. Dykman and P. M. Tomchuk, Effect of electric field on the temperature of electrons, electrical conductivity, and thermoionic emission of semiconductors. Sov. Physics-Solid State 2, 1988 (1961).

    Google Scholar 

  22. H. Fröhlich and B. V. Paranjape, Dielectric breakdown in solids. Proc. Phys. Soc. London B 69, 21 (1956).

    Article  ADS  Google Scholar 

  23. R. C. Fletcher, W. A. Yager, and F. R. Merritt Observations of quantum effects in cyclotron resonance. Phys. Rev. 100, 747 (1955).

    Article  ADS  Google Scholar 

  24. W. Franz, Integralgleichungen zur Bestimmung der Beweglichkeit in Halbleitern. Z. Naturf. 15a, 366 (1960).

    ADS  Google Scholar 

  25. C. G. B. Garrett and W. H. Brattain, Some experiments on, and theory of, surface breakdown. J. Appl. Phys. 27, 299 (1956).

    Article  ADS  Google Scholar 

  26. J. F. Gibbons, Hall-effect in high electric fields. Proc. IRE 47, 102 (1959).

    Article  Google Scholar 

  27. A. F. Gibson and J. W. Granville, The measurement of drift mobility in germanium at high electric fields. J. Electronics 2, 259 (1956).

    Article  Google Scholar 

  28. A. F. Gibson, The mobility, diffusion constant, and lifetime of minority carriers in heavily dislocated germanium. J. Phys. Chem. Solids 8 147 (1959).

    Article  ADS  Google Scholar 

  29. A. F. Gibson, J. W. Granville, and E. G. S. Paige, A study of energy-loss processes in germanium at high electric fields using microwave techniques. J. Phys, Chem. Solids 19, 198 (1961).

    Article  ADS  Google Scholar 

  30. M. Glicksman and M. C. Steele, High electric field effects in n-InSb. Phys. Rev. 110, 1204 (1958).

    Article  ADS  Google Scholar 

  31. M. Glicksman and M. C. Steele, Hall-effect in high electric fields. Proc. IRE 47, 1781 (1959).

    Article  Google Scholar 

  32. L. Gold, Anisotropy of the hot electron problem in semiconductors with spheriodal energy surfaces. Phys. Rev. 104, 1580 (1956).

    Article  ADS  MathSciNet  Google Scholar 

  33. L. Gold, Hot-electron behaviour in germanium under the influence of a magnetic field. Phys. Rev. 114, 691 (1959).

    Article  ADS  Google Scholar 

  34. L. Gold, Contribution of an orientated magnetic field to the electrical breakdown of a many-valley semiconductor. Internat. Halbl. Konf. Prag 1960.

    Google Scholar 

  35. L. Gold, Hot electron nonequilibrium carrier distribution in a many-valley semiconductor. J. Phys. Soc. Japan 16, 575 (1961).

    Article  ADS  Google Scholar 

  36. R. F. Greene, Cooling of hot electrons by acoustic scattering in degenerate semiconductors. J. Electronics 3, 387 (1957).

    Article  Google Scholar 

  37. J. B. Gunn, A simple bridge circuit for the accurate measurement of pulse impedance. J. Sci. Instr. 33, 364 (1956).

    Article  ADS  Google Scholar 

  38. J. B. Gunn, The field-dependence of electron mobility in germanium. J. Electronics 2, 87 (1956).

    Article  Google Scholar 

  39. J. B. Gunn, High electric field effects in semiconductors. Progr. in Semic. 2, 213 (1957).

    Google Scholar 

  40. J. B. Gunn, Effect of electron and impurity density on the field-dependence of mobility in germanium. J. Phys. Chem. Solids, 8, 239 (1959).

    Article  ADS  Google Scholar 

  41. J. B. Gunn, Private Mitteilung an S. H. Koenig, M. J. Nathan, W. Paul und A. C. Smith [53] S. H. Koenig, M. J. Nathan, W. Paul, and A. C. Smith, Effect of high pressure on some hot electron phenomena in n-type germanium. Phys. Rev. 118, 1217 (1960).

    Google Scholar 

  42. M. Hattori and H. Sato, Note on the field dependence of the mobility in semiconductors. J. Phys. Soc. Japan, 15, 1237 (1960).

    Article  ADS  MATH  Google Scholar 

  43. C. Herring, Transport properties of a many-valley semiconductor. B. S. T. J., 34, 237 (1955).

    Google Scholar 

  44. K. Hübner and W. Shockley, Transmitted phonon drag measurements in silicon. Phys. Rev. Letters, 4, 504 (1960).

    Article  ADS  Google Scholar 

  45. W. Kaiser and G. H. Wheatley, Hot electrons and carrier multiplication in silicon at low temperature. Phys. Rev. Letters 3, 334 (1959).

    Article  ADS  Google Scholar 

  46. Y. Kanai, Electrical conductivity in p-type InSb under strong electric field. J. Phys. Soc. Japan 13, 1065 (1958).

    Article  ADS  Google Scholar 

  47. Y. Kanai, Electrical conductivity in n-type InSb under strong electric field. J. Phys. Soc. Japan 13, 967 (1958).

    Article  ADS  Google Scholar 

  48. Y. Kanai, Electrical properties of n-type InSb in high electric field at 77°K. J. Phys. Soc. Japan, 14, 1302 (1959).

    Article  ADS  Google Scholar 

  49. S. H. Koenig and G. R. Gunther-Mohr, The low temperature electrical conductivity of n-type germanium. J. Phys. Chem. Solids, 2, 268 (1957).

    Article  ADS  Google Scholar 

  50. S. H. Koenig, Possible Franck-Hertz-effect in n-type germanium at low temperatures. Bull. Amer. Phys. Soc. Ser. II 3, 112 (1958).

    Google Scholar 

  51. S. H. Koenig, Hot and warm electrons.—A review. J. Phys. Chem. Solids 8, 227 (1959).

    Article  ADS  Google Scholar 

  52. S. H. Koenig, Inter-electron collisions and the “temperature” of hot electrons. Proc. Phys. Soc. 73, 959 (1959).

    Article  ADS  Google Scholar 

  53. S. H. Koenig, M. J. Nathan, W. Paul, and A. C. Smith, Effect of high pressure on some hot electron phenomena in n-type germanium. Phys. Rev. 118, 1217 (1960).

    Article  ADS  Google Scholar 

  54. M. A. Lampert, F. Herman, and M. C. Steele, Role of single phonon emission in low-field breakdown of semiconductors at low temperatures. Phys. Rev. Letters 2, 394 (1959).

    Article  ADS  Google Scholar 

  55. R. D. Larrabee, Drift velocity saturation in p-type germanium. J. Appl. Phys., 30, 857 (1959).

    Article  ADS  Google Scholar 

  56. B. Lax and J. G. Mavroides, Cyclotron resonance. Solid State Physics 11, 261 (1960).

    Article  Google Scholar 

  57. D. C. Mattis, Steady-state distribution function in dilute electron gases. Phys. Rev. 120, 52 (1960).

    Article  MATH  ADS  Google Scholar 

  58. K. S. Mendelson and R. Bray, Field dependence of mobility in p-type germanium. Proc. Phys. Soc. B 70, 899 (1957).

    Article  ADS  Google Scholar 

  59. H. J. G. Meijer and D. Polder, Note on polar scattering of conduction electrons in regular crystals. Physica 19, 225 (1953).

    Article  ADS  Google Scholar 

  60. H. J. G. Meyer, Theory of infrared absorption by conduction electrons in germanium. J. Phys. Chem. Solids, 8, 264 (1959).

    Article  ADS  Google Scholar 

  61. T. N. Morgan, Field-induced changes in the electron distribution function for germanium in the presence of acoustical and optical mode scattering. Bull. Amer. Phys. Soc. Ser. II 3, 13 (1958).

    Google Scholar 

  62. T. N. Morgan, The mobility of electrons heated by microwave fields in n-type germanium. J. Phys. Chem. Solids 8, 245 (1959).

    Article  ADS  Google Scholar 

  63. T. N. Morgan and C. E. Kelly, The electric field dependence of conduction by electrons in nearly pure germanium. Internat. Halbl. Konf. Prag 1960.

    Google Scholar 

  64. T. N. Morgan, Electron distribution function in n-germanium. Bull. Amer. Phys. Soc. Ser. II 5, 194 (1960).

    Google Scholar 

  65. M. I. Nathan, Harvard University, Gordon McKay Technical Report HP-1 1958. Univeröffentlicht.

    Google Scholar 

  66. M. I. Nathan, Anisotropy of drift velocity vs electric field in n-type germanium. Bull. Amer. Phys. Soc. Ser. II 5, 194 (1960).

    Google Scholar 

  67. E. G. S. Paige, Experimental determination of electron temperature in high electric fields applied to germanium. Proc Phys. Soc. B 72, 921 (1958).

    Article  ADS  Google Scholar 

  68. E. G. S. Paige, The anisotropy of the conductivity of hot electrons and their temperature in germanium. Proc. Phys. Soc. 75, 174 (1960).

    Article  ADS  Google Scholar 

  69. B. V. Paranjape, Field dependence of mobility in semiconductors. Proc. Phys. Soc. B 70, 628 (1957).

    Article  ADS  Google Scholar 

  70. B. V. Paranjape, Microwave heating of electrons in semiconductors. Bull. Amer. Phys. Soc. Ser. II 5, 60 (1960).

    Google Scholar 

  71. E. Poindexter, Piezobirefringence in diamond. Amer. Min. 40, 1032 (1955).

    Google Scholar 

  72. D. Polder, Private Mitteilung.

    Google Scholar 

  73. A. C. Prior, Avalanche multiplication and electron mobility in InSb at high electric fields. J. Electronics 4, 165 (1958).

    Article  Google Scholar 

  74. A. C. Prior, The field dependence of carrier mobility in silicon and germanium. J. Phys. Chem. Solids 12, 175 (1959).

    Article  ADS  Google Scholar 

  75. A. C. Prior, A reversed carrier transport effect in germanium. Proc. Phys. Soc. 76, 465 (1960).

    Article  ADS  Google Scholar 

  76. E. H. Putley, Electrical conduction in n-type InSb between 2°K and 300°K. Proc. Phys. Soc. 73, 280 (1959).

    Article  ADS  Google Scholar 

  77. C. J. Rauch and H. J. Zeiger, Private Mitteilung an B. Lax [56].

    Article  Google Scholar 

  78. H. G. Reik, H. Risken, and G. Finger, Theory of hot electrons in many-valley semiconductors in the region of high electric field. Phys. Rev. Letters 5, 423 (1960).

    Article  ADS  Google Scholar 

  79. H. G. Reik, Theoretische Untersuchungen zum Problem der heißen Elektronen in Halbleitern. Halbleiterprobleme VII, 122 (1962).

    Google Scholar 

  80. H. G. Reik and H. Risken, Distribution functions for hot electrons in many-valley semiconductors. Phys. Rev. 124, 777 (1961).

    Article  MATH  ADS  Google Scholar 

  81. B. K. Ridley and T. B. Watkins, The possibility of negative resistance effects in semiconductors. Proc. Phys. Soc. 78, 293 (1961).

    Article  ADS  Google Scholar 

  82. B. K. Ridley and T. B. Watkins, The dependence of capture rate on electric field and the possibility of negative resistance in semiconductors. Proc. Phys. Soc. 78, 710 (1961).

    Article  ADS  Google Scholar 

  83. B. V. Rollin and J. M. Rowell, Hot carriers in germanium. Proc. Phys. Soc. B 76, 1001 (1960).

    Article  ADS  Google Scholar 

  84. E. J. Ryder and W. Shockley, Mobilities of electrons in high electric fields. Phys. Rev. 81, 139 (1951).

    Article  ADS  Google Scholar 

  85. E. J. Ryder, Mobility of holes and electrons in high electric fields. Phys. Rev. 90, 766 (1953).

    Article  ADS  Google Scholar 

  86. W. Sasaki and M. Shibuya, Experimental evidence of the anisotropy of hot electrons in n-type germanium. J. Phys. Soc. Japan 11, 1202 (1956).

    Article  ADS  Google Scholar 

  87. W. Sasaki, M. Shibuya, and K. Mizuguchi, Anisotropy of hot electrons in n-type germanium. J. Phys. Soc. Japan 13, 456 (1958).

    Article  ADS  Google Scholar 

  88. W. Sasaki, M. Shibuya, K. Mizuguchi, and G. M. Hatoyama, Anisotropy of hot electrons in germanium. J. Phys. Chem. Solids 8, 250 (1959).

    Article  ADS  Google Scholar 

  89. H. Sato, The field dependence of the mobility of electrons in n-germanium. J. Phys. Soc. Japan 14, 1275 (1959).

    Article  ADS  Google Scholar 

  90. K. H. Seeger, Microwave field dependence of drift mobility in germanium. Phys. Rev. 114, 476 (1959).

    Article  ADS  Google Scholar 

  91. K. H. Seeger, Heiße Elektronen in Germanium. Abh. Deutsch. Akad. Wissensch. Berlin 1, 32 (1960).

    Google Scholar 

  92. K. H. Seeger, Ionenstreuung warmer Elektronen in nicht-entarteten unpolaren Halbleitern. Z. Physik 156, 582 (1959).

    Article  ADS  Google Scholar 

  93. K. J. Schmidt-Tiedemann, Leitfähigkeits-Anisotropie heißer Elektronen in n-Germanium. Phys. Verh. 9, 150 (1960).

    Google Scholar 

  94. K. J. Schmidt-Tiedemann und S. König, 1960. Unveröffentlicht.

    Google Scholar 

  95. K. J. Schmidt-Tiedemann und D. Restorff, 1960. Unveröffentlicht.

    Google Scholar 

  96. K. J. Schmidt-Tiedemann, Optische Doppelbrechung durch freie Träger in Halbleitern. Z. Naturf. 16a, 639 (1961).

    ADS  Google Scholar 

  97. K. J. Schmidt-Tiedemann, Symmetry properties of warm electron effects in cubic semiconductors. Phys. Rev. 123, 1999 (1961).

    Article  ADS  Google Scholar 

  98. K. J. Schmidt-Tiedemann, Experimental evidence of birefringence by free carriers in semiconductors. Phys. Rev. Letters 7, 372 (1961).

    Article  ADS  Google Scholar 

  99. M. Shibuya, Hot electron problem in semiconductors with spheroidal energy surfaces. Phys. Rev. 99, 1189 (1955).

    Article  MATH  ADS  Google Scholar 

  100. M. Shibuya and W. Sasaki, Intervalley scattering of hot electrons. J. Phys. Soc. Japan 15, 207 (1960).

    Article  ADS  Google Scholar 

  101. W. Shockley, Hot electrons in germanium and Ohm’s law. B. S. T. J. 30, 990 (1951).

    Google Scholar 

  102. W. Shockley, Dislocations and edge states in the diamond crystal structure. Phys. Rev. 91, 228 (1953).

    Article  Google Scholar 

  103. W. Shockley, Theory of transmitted phonon drag. Structure and properties of thin films. Herausg. von C. A. Neugebauer, J. B. Newkirk und D.A. Vermilyea (John Wiley and Sons, Inc., New York 1959) pp. 306–326.

    Google Scholar 

  104. W. Shockley und K. Hübner, 1961. Private Mitteilung.

    Google Scholar 

  105. R. J. Sladek and F. S. Black, Variation of the electron mobility with electric field strength in InSb and the influence of a strong magnetic field. Bull. Amer. Phys. Soc. Ser. II 3, 378 (1958).

    Google Scholar 

  106. R. J. Sladek, Energy loss of warm electrons in n-InSb caused by piezoelectric scattering. Bull. Amer. Phys. Soc. Ser. II 5, 408 (1960).

    Google Scholar 

  107. R. J. Sladek, Quadratic deviations from Ohm’s law in n-type InSb. Phys. Rev. 120, 1589 (1960).

    Article  ADS  Google Scholar 

  108. M. S. Sodha, Variation of mobility with electric field in nondegenerate semiconductors. Phys. Rev. 107, 1266 (1957).

    Article  ADS  Google Scholar 

  109. M. S. Sodha and P. C. Eastmann, Variation of hall mobility of carriers in nondegenerate semiconductors with electric field. Phys. Rev. 110, 1314 (1958).

    Article  ADS  Google Scholar 

  110. M. S. Sodha and D. B. Agarwal, Low field mobility of carriers in nondegenerate semiconductors. Canad. J. Phys. 36, 707 (1958).

    ADS  Google Scholar 

  111. M. S. Sodha and Y. P. Varshni, Solution of Boltzmann’s equation in presence of high electric field, magnetic field, and temperature gradient for electrons in a simple model nondegenerate nonuniform semiconductor. Internat. Halbl. Konf. Prag 1960.

    Google Scholar 

  112. M. C. Steele and M. Glicksman, High electric field effects in n-InSb. J. Phys. Chem. Solids 8, 242 (1959).

    Article  ADS  Google Scholar 

  113. R. Stratton, The influence of inter-electronic collisions on conduction and breakdown in covalent semiconductors. Proc. Roy. Soc. London A 242, 355 (1957).

    Article  MATH  ADS  Google Scholar 

  114. R. Stratton, The influence of inter-electronic collisions on conduction and breakdown in polar crystals. Proc. Roy. Soc. London A 246, 406 (1958).

    Article  MATH  ADS  Google Scholar 

  115. R. Stratton On the hot electron effect in n-type germanium. J. Electronics 5, 157 (1958).

    Article  Google Scholar 

  116. G. Weinreich, T. M. Sanders, and H. G. White, Acoustoelectric effect in n-type germanium. Phys. Rev. 114, 33 (1959).

    Article  ADS  Google Scholar 

  117. J. Yamashita and M. Watanabe, On the conductivity of non-polar crystals in the strong electric field. I. Progr. Theor. Phys. 12, 443 (1954).

    Article  MATH  ADS  Google Scholar 

  118. J. Yamashita, Conductivity of non-polar crystals in strong electric field. II. Phys. Rev. 111, 1529 (1958).

    Article  ADS  Google Scholar 

  119. J. Yamashita and K. Inoue, Hot electron in n-type germanium. Phys. Chem. Solids 12, 1 (1959).

    Article  ADS  Google Scholar 

  120. H. J. Zeiger, C. J. Rauch, and M. E. Behrndt, Observation of microwave cyclotron resonance by cross modulation. Phys. Rev. Letters 1, 59 (1958).

    Article  ADS  Google Scholar 

  121. H. J. Zeiger, C. J. Rauch, and M. E. Behrndt, Cross modulation of dc resistance by microwave cyclotron resonance. J. Phys. Chem. Solids 8, 496 (1959).

    Article  ADS  Google Scholar 

  122. J. Zucker, Mobility in high resistivity germanium at high dc electric fields. Phys. Chem. Solids 12, 350 (1960).

    Article  ADS  Google Scholar 

  123. Proceedings International Conference on Semiconductor Physics Prague 1960 (Czechoslovak Academy of Sciences, Prague, 1961).

    Google Scholar 

  124. H. Risken and H. J. G. Meyer, Contribution of lattice scattering between none-quivalent valleys to free-carrier infrared absorption in semiconductors. Phys. Rev. 123, 416 (1961).

    Article  ADS  Google Scholar 

  125. S. M. de Veer and H. J. G. Meyer, private Mitteilung.

    Google Scholar 

  126. A. F. Gibson and J. W. Granville, Infra-red and microwave modulators using germanium. Proceedings on the Role of Solid State Phenomena in Electric Circuits (Polytechn. Inst. of Brooklyn, 1957), p. 303.

    Google Scholar 

  127. M. Harmatz, Microwave absorption modulation by electron mobility variation in n-type germanium. Trans. IRE, MITT 9, 199 (1961).

    Article  Google Scholar 

  128. W. P. Dumke, Quantum theory of free carrier absorption. Phys. Rev. 124, 1813 (1961).

    Article  ADS  MathSciNet  Google Scholar 

  129. M. A. C. S. Brown and E. G. S. Paige, Electric-field-induced modulation of the absorption due to interband transitions of free holes in germanium. Phys. Rev. Letters 7, 84 (1961).

    Article  ADS  Google Scholar 

  130. E. Erlbach and J. B. Gunn, Noise temperature of hot electrons in germanium. Phys. Rev. Letters (to be published).

    Google Scholar 

  131. M. A. C. S. Brown, Deviations from Ohm’s law in germanium and silicon. J. Phys. Chem. Solids 19, 218 (1961).

    Article  ADS  Google Scholar 

  132. Y. Kanai, The change in electron mobility in indium antimonide at low electric field. J. Phys. Soc. Japan 15, 830 (1960).

    Article  ADS  Google Scholar 

  133. J. Auth, Eine Spekulation über die Rolle “heißer” Elektronen beim “anomalen” PEM-Effekt. Z. phys. Chem., Lpz., 217, 188 (1961). *** DIRECT SUPPORT *** A00AX001 00005

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Fritz Sauter

Rights and permissions

Reprints and permissions

Copyright information

© 1962 Friedr. Vieweg & Sohn

About this chapter

Cite this chapter

Schmidt-Tiedemann, K.J.S. (1962). Experimentelle Untersuchungen zum Problem der heißen Elektronen in Halbleitern. In: Sauter, F. (eds) Festkörperprobleme 1. Advances in Solid State Physics, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0108974

Download citation

  • DOI: https://doi.org/10.1007/BFb0108974

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75309-4

  • Online ISBN: 978-3-540-75310-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics