Skip to main content

GaSb/AlGaSb VCSEL structures and microcavities in the 1.5 μm wavelength range

  • Light Emitting Devices
  • Conference paper
  • First Online:
Advances in Solid State Physics 40

Part of the book series: Advances in Solid State Physics ((ASSP,volume 40))

  • 80 Accesses

Abstract

Vertical cavity surface emitting laser structures for 1.5 μm wavelength applications were realized by growing AlSb/AlGaSb Bragg mirrors on GaAs substrates with solid source molecular beam epitaxy. Due to the high refractive index contrast between GaSb and AlSb high quality resonators can be made by only 15 layer pairs for each Bragg mirror. Laser operation could be demonstrated by optical pumping with threshold excitation densities of about 500 W/cm2. In laterally deeply etched microcavities with diameters of 5 μm a clear discretization of the optical modes was observed. The lateral confinement effects are compared with results of AlAs/GaAs microcavities designed for 0.9 μm emission wavelength. Due to the longer wavelength a stronger confinement effect can be achieved in AlSb/AlGaSb microcavities for the same lateral dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. G.M. Young, M.H. McDougal, and P. Dapkus, Electron. Lett. 31, 886 (1995).

    Article  Google Scholar 

  2. M. Grabherr, R. Jager, M. Miller, C. Thalmaier, J. Herlein, R. Michalzik, and K.J. Ebeling, IEEE Photonics Technol. Lett. 10, 1061 (1998).

    Article  ADS  Google Scholar 

  3. F.S. Choa, K. Tai, W. Tsang, and S.N.G. Chu, Appl. Phys. Lett. 59, 2820 (1991).

    Article  ADS  Google Scholar 

  4. J. Piprek, Y.A. Akulova, D.I. Babic, L.A. Coldren, J.E. Bowers, Appl. Phys. Lett. 72, 1814 (1998).

    Article  ADS  Google Scholar 

  5. P. Salet, F. Gaborit, P. Pagnod-Rossiaux, A. Plais, E. Derouin, J. Pasquier, and J. Jacquet, Electron. Lett. 33, 2048 (1997).

    Article  Google Scholar 

  6. A.G. Milnes, A.Y. Polyakow, Solid-State Electronics 36, 803 (1993).

    Article  ADS  Google Scholar 

  7. J. Koeth, T. Bleuel, R. Werner, and A. Forchel, J. Cryst. Growth, 201–202, 841 (1999).

    Article  Google Scholar 

  8. A. Joullie, G. Glastre, R. Blondeau, J.C. Nicolas, Y. Cuminal, A.N. Baranov, A. Wilk, M. Garcia, P. Grech, and C. Alibert, C. IEEE J. Sel. Top. Quantum Electronics 5, 711 (1999).

    Article  Google Scholar 

  9. S. Simanowski, M. Walther, J. Schmitz, R. Kiefer, N. Herres, F. Fuchs, M. Maier, C. Mermelstein, J. Wagner, and G. Weimann, J. Cryst. Growth 201–202, 849 (1999).

    Article  Google Scholar 

  10. C. Alibert, M. Skouri, A. Joullie, and M. Benouna, J. Appl. Phys. 69, 3208 (1991).

    Article  ADS  Google Scholar 

  11. B. Lambert, Y. Toudic, Y. Rouillard, M. Baudet, B. Deveaud, I. Valiente, and J.C. Simon, Appl. Phys. Lett. 64, 690 (1994).

    Article  ADS  Google Scholar 

  12. J. Koeth, R. Dietrich, and A. Forchel, Appl. Phys. Lett. 72, 1638 (1998).

    Article  ADS  Google Scholar 

  13. Landoldt-Börnstein, Semiconductors, Physics of Group IV Elements and III–V Compounds, III/17a New Series (Springer, 1981).

    Google Scholar 

  14. D.K. Gosh, L.K. Samanta, and G.C. Bhar, Infrared Phys. 26, 111 (1986).

    Article  ADS  Google Scholar 

  15. C. Ghezzi, R. Magnanini, and A. Parisini, Phys. Rev. B52, 1463 (1995).

    Article  ADS  Google Scholar 

  16. Y.P. Varshni, Physica 34, 150 (1967).

    Article  ADS  Google Scholar 

  17. J.P. Reithmaier, M. Röhner, H. Zull, F. Schäfer, A. Forchel, P.A. Knipp, and T.L. Reinecke, Phys. Rev. Lett. 78, 378 (1997).

    Article  ADS  Google Scholar 

  18. T. Gutbrod, M. Bayer, A. Forchel, J.P. Reithmaier, T.L. Reinecke, S. Rudin, and P.A. Knipp, Phys. Rev. B57, 9950 (1998).

    Article  ADS  Google Scholar 

  19. M. Röhner, J.P. Reithmaier, A. Forchel, and H. Zull, Appl. Phys. Lett. 71, 488 (1997).

    Article  ADS  Google Scholar 

  20. B. Ohnesorge, M. Bayer, A. Forchel, J.P. Reithmaier, N.A. Gippius, S.G. Tikhodeev, Phys. Rev. B56, R4367 (1997).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bernhard Kramer

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH

About this paper

Cite this paper

Koeth, J., Dietrich, R., Reithmaier, J.P., Forchel, A. (2000). GaSb/AlGaSb VCSEL structures and microcavities in the 1.5 μm wavelength range. In: Kramer, B. (eds) Advances in Solid State Physics 40. Advances in Solid State Physics, vol 40. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0108384

Download citation

  • DOI: https://doi.org/10.1007/BFb0108384

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41576-3

  • Online ISBN: 978-3-540-44560-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics