Skip to main content

High performance selectively oxidized VCSELs and arrays for parallel high-speed optical interconnects

  • Light Emitting Devices
  • Conference paper
  • First Online:
Advances in Solid State Physics 40

Abstract

We introduce a new layout for high-bandwidth single-mode selectively oxidized vertical-cavity surface-emitting laser (VCSEL) arrays operating at 980 nm or 850 nm emission wavelength for substrate or epitaxial side emission. Coplanar feeding lines and polyimide passivation are used to reduce electrical parasitics in top-emitting GaAs and bottom-emitting InGaAs VCSELs. In order to enhance fundamental single-mode emission for larger devices of reduced series resistance a surface relief transverse mode filter is employed. Fabricated VCSELs are applied in various interconnect schemes. In detail, we demonstrate 2.5 Gb/s pseudo-random data transmission with GaAs VCSELs at an emission wavelength of λ=835 nm over 120 μm core diameter step index plastic-optical fiber (POF) of 2.5 m length. InGaAs quantum-well based VCSELs at 935 nm emission wavelength are investigated for use in perfluorinated graded-index plastic-optical fiber (GI-POF) links. We obtain a 7 Gb/s pseudo random bit sequence (PRBS) non-return-to-zero (NRZ) data transmission over 80 m long 155 μm diameter GI-POF. We investigate data transmission over standard 1300 nm, 9 μm core diameter single-mode fiber using selectively oxidized single-mode GaAs or InGaAs VCSELs. We achieve biased 3 Gb/s and bias-free 1 Gb/s pseudo-random data transmission over 4.3 km at 830 nm emission wavelength where a simple fiber mode filter is used to suppress intermodal dispersion caused by the second order fiber mode. For the first time, we demonstrate 12.5 Gb/s data rate transmission of PRBS signals over 100 m graded-index multimode fiber or 1 km single-mode fiber using high performance single-mode GaAs VCSELs of 12.3 GHz modulation bandwidth emitting at λ=850 nm. Longer wave-length InGaAs VCSELs with emission at λ=1130 nm are used to transmit 2.5 Gb/s signals over 10 km of 9 μm standard fiber. For all data transmission experiments bit-error rates (BER) remain better than 10−11 for transmission of PRBS signals for back-to-back (BTB) testing as well as for fiber transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Gigabit Ethernet Alliance, Gigabit Ethernet Whitepaper 1997, gigabit2.pdf (1997).

    Google Scholar 

  2. A.V. Krishnamoorthy, R.G. Rozier, J.E. Ford, and F.E. Kiamilev, IEEE Photon. Technol. Lett. 9, 1517 (1997).

    Article  ADS  Google Scholar 

  3. D.L. Huffaker, D.G. Deppe, and K. Kumar, Appl. Phys. Lett. 65, 97 (1994).

    Article  ADS  Google Scholar 

  4. D.G. Deppe, D.L. Huffaker, T. Oh, H. Deng, Q. Deng, IEEE J. Sel. Topics Quantum Electron. 3, 893 (1997).

    Article  Google Scholar 

  5. R. Jäger, M. Grabherr, C. Jung, R. Michalzik, G. Reiner, B. Weigl, and K.J. Ebeling, Electron. Lett. 33, 330 (1997).

    Article  Google Scholar 

  6. C. Jung, M. Grabherr, R. Jäger, P. Schnitzer, D. Wiedenmann, R. Michalzik, U. Martin, S. Müller, and K.J. Ebeling, Electron. Lett. 33, 1790 (1997).

    Article  Google Scholar 

  7. K.L. Lear, V.M. Hietala, H.Q. Hou, M. Ochiai, J.J. Banas, B.E. Hammons, J.C. Zolper, and S.P. Kilcoyne, OSA Trends in Optics and Photonics, 15, 69 (1997).

    Google Scholar 

  8. F. Mederer, C. Jung, R. Jäger, M. Kicherer, R. Michalzik, P. Schnitzer, D. Wiedenmann, and K.J. Ebeling, in Proc. LEOS Annual Meeting 1999 2, 697 (1999).

    Google Scholar 

  9. Semiconductor Industry Association, The national technology roadmap for semiconductors, 1993–1994.

    Google Scholar 

  10. H. Hinton, IEEE J. Select. Topics in Quantum Electron. 14 (1996).

    Google Scholar 

  11. A.V. Krishnamoorthy and D.A.B. Miller, IEEE J. Select. Topics in Quantum Electron., 55 (1996).

    Google Scholar 

  12. L.J. Norton, F. Carney, N. Choi, C.K.Y. Chun, R.K. Denton Jr., D. Diaz, J. Knapp, M. Meyering, C. Ngo, S. Planner, G. Raskin, E. Reyes, J. Sauvageau, D.B. Schwartz, S.G. Shook, J. Yoder, and Y. Wen, in Proc. ECTC, 204 (1999).

    Google Scholar 

  13. H. Kosaka, M. Kajita, M. Yamada, and Y. Sugimoto, in ECTC, 382 (1997).

    Google Scholar 

  14. Y.S. Liu, R.J. Wojnarowski, W.A. Hennessy, J. Rowlette, J. Stack, M. Kadar-Kallen, E. Green, Y. Liu, J.P. Bristow, A. Peczalski, L. Eldada, J. Yardley, R.M. Osgood, R. Scarmozzino, S.H. Lee, and S. Patra, in Proc. ECTC, 391 (1997).

    Google Scholar 

  15. M. Usui, N. Matsuura, N. Sato, M. Nakamura, N. Tanaka, A. Ohki, M. Hikita, R. Yoshimura, K. Tateno, K. Katsura, and Y. Ando, in Proc. LEOS 1, 51 (1997).

    Google Scholar 

  16. A. Yuen, K. Giboney, E. Wong, L. Buckman, D. Haritos, P. Rosenberg, J. Straznicky, and D. Dolfi, in Proc. LEOS 2, 191 (1997).

    Google Scholar 

  17. R. Olshansky, P. Hill, V. Lanzisera, and W. Powasinik, IEEE J. Quantum Electron. 23, 1410 (1987).

    Article  ADS  Google Scholar 

  18. S. Matsuo, T. Nakahara, K. Tateno, H. Tsuda, and T. Kurokawa, OSA Trends in Opt. and Photon. 14, 39 (1997).

    Google Scholar 

  19. H. Martinsson, J.A. Vukusic, M. Grabherr, R. Michalzik, R. Jäger, K.J. Ebeling, and A. Larsson, IEEE Photon. Techn. Lett. 11, 1536 (1999).

    Article  ADS  Google Scholar 

  20. J.A. Lehman, R.A. Morgan, D. Carlson, M. Hagerott Crawford, K.D. Choquette, Electron. Lett. 33, 298 (1997).

    Article  Google Scholar 

  21. Koike, in Proc. POF, 40 (1997).

    Google Scholar 

  22. T. Onishi, H. Murofushi, Y. Watanabe, Y. Takano, R. Yoshida, and M. Naritomi, in Proc. POF, 39 (1998).

    Google Scholar 

  23. A.W. Snyder, and J.D. Love, Optical Waveguide Theory, Chapman and Hall (New York, 1983), 311.

    Google Scholar 

  24. H.F. Taylor, IEEE J. Lightwave Technol. 2, 617 (1984).

    Article  ADS  Google Scholar 

  25. Marcuse, J. Opt. Soc. Am. 66, 216 (1976).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bernhard Kramer

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH

About this paper

Cite this paper

Mederer, F. et al. (2000). High performance selectively oxidized VCSELs and arrays for parallel high-speed optical interconnects. In: Kramer, B. (eds) Advances in Solid State Physics 40. Advances in Solid State Physics, vol 40. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0108383

Download citation

  • DOI: https://doi.org/10.1007/BFb0108383

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41576-3

  • Online ISBN: 978-3-540-44560-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics