Skip to main content

Hanle-oscillations in the stimulated emission of microcavity laser

  • Conference paper
  • First Online:
Advances in Solid State Physics 37

Abstract

We demonstrate a new phenomenon in the emission dynamics of semiconductor microcavities. Hanle-oscillations of the electron spins modulate the gain of microcavities up to extremely high frequencies. So far, we achieved modulation frequencies of 22 GHz with a modulation depth of 96% but we expect much higher pulse repetition rates for higher magnetic fields and for semiconductors with larger electron g factors. In principle, the maximum frequency is only limited by the photon life-time and the maximum gain of the microcavity. The pulse repetition rate is extremely stable since it only depends on the internal clock of the Larmor precession of the electron spins and, therefore, is insensitive to scattering and energy relaxation of the electrons. A microscopic theory is developed to analyze the non-equilibrium carrier and laser dynamics in the framework of Hartree-Fock equations. Measurements with coupled microcavity lasers show a density dependent switching between two distinct oscillation frequencies. The switching turns out to be an interesting method to characterize the active gain medium in coupled microcavities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. P. Michler, A. Lohner, W. W. Rühle, and K. Ploog Appl. Phys. Lett. 66, 1599 (1995).

    Article  ADS  Google Scholar 

  2. P. Michler, W. W. Rühle, G. Reiner, K. J. Ebeling, and A. Moritz, Appl. Phys. Lett. 67 1363, (1995)

    Article  ADS  Google Scholar 

  3. F. Jahnke and S. W. Koch, Appl. Phys. Lett. 67, 2278 (1995).

    Article  ADS  Google Scholar 

  4. S. G. Hense, M. Elsässer, and M. Wegener, published in this volume.

    Google Scholar 

  5. A. P. Heberle, W. W. Rühle, and K. Ploog, Phys. Rev. Lett. 72, 3887 (1994).

    Article  ADS  Google Scholar 

  6. M. Oestreich, S. Hallstein, A. P. Heberle, K. H. Schmidt, K. Eberl, E. Bauser, and W. W. Rühle, Phys. Rev. B 53, 7911 (1996).

    Article  ADS  Google Scholar 

  7. M. Oestreich, A. P. Heberle, W. W. Rühle, R. Nötzel, and K. Ploog, Europhys. Lett. 31, 399 (1995).

    Article  ADS  Google Scholar 

  8. M. Oestreich and W. W. Rühle, Phys. Rev. Lett. 74, 2315 (1995).

    Article  ADS  Google Scholar 

  9. R. M. Hannak, M. Oestreich, A. P. Heberle, and W. W. Rühle, Solid State Comm. 93, 313 (1995)

    Article  ADS  Google Scholar 

  10. A. Tredicucci, Y. Chen, V. Pellegrini, M. Börger, L. Sorba, F. Beltram, and F. Bassani, Phys. Rev. Lett. 75, 3907 (1995).

    Article  ADS  Google Scholar 

  11. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, Phys. Rev. Lett. 69, 3314 (1992)

    Article  ADS  Google Scholar 

  12. S. Bar-Ad and I. Bar-Joseph, Phys. Rev. Lett. 66, 2491 (1991).

    Article  ADS  Google Scholar 

  13. The modulation depth also decreases with increasing magnetic field as soon as the Larmor frequency becomes comparable to the photon life-time in the microcavity. We observe this effect in principle but the measurements are obscured by the limited time resolution of our experimental setup.

    Google Scholar 

  14. For a textbook discussion, see H. Haug and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors, 3rd ed. (World Scientific Singapore, 1994).

    MATH  Google Scholar 

  15. The material parameters used in the calculations are: cavity-damping time 2 ps, m e=0.0665m 0, m h=0.234m 0, carrier-carrier scattering rate 100 fs, thermalization rate 30 ps, hole-spin relaxation rate 5 ps, spontaneous emission rate 800 ps and coupling 10−3 and transverse mode overlap 0.2. The pump field polarization and Rabi-energy are taken to be 0.6 and 1.6E B, respectively.

    Google Scholar 

  16. P. Michler, M. Hilpert, and G. Reiner, Appl. Phys. Lett. 70, 21st April (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Reinhard Helbig

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH

About this paper

Cite this paper

Oestreich, M. et al. (1998). Hanle-oscillations in the stimulated emission of microcavity laser. In: Helbig, R. (eds) Advances in Solid State Physics 37. Advances in Solid State Physics, vol 37. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0108248

Download citation

  • DOI: https://doi.org/10.1007/BFb0108248

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41574-9

  • Online ISBN: 978-3-540-44556-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics