Skip to main content

Nonlinear semiconductor microcavity reflectance and photoluminescence from normal-mode coupling to lasing

  • Conference paper
  • First Online:

Part of the book series: Advances in Solid State Physics ((ASSP,volume 37))

Abstract

The transition from the nonperturbative reversible emission regime of normal-mode coupling all the way to the perturbative regime of irreversible lasing emission is studied. The microcavity samples contain one or two InGaAs/GaAs quantum wells with very narrow absorption linewidths (1 meV) resulting in record normal-mode-coupling splitting-to-linewidth ratios. For zero exciton-cavity detuning, the transmission peaks and reflectance dips vanish with increased carrier density with little change in splitting. This new nonlinear behavior is observed because exciton broadening with little reduction in oscillator strength is the dominant nonlinearity at low densities for such narrow-linewidth excitons. A microscopic theory, where the effects of carrier and polarization scattering are included at the microscopic level, explains these experiments. The photoluminescence emitted perpendicular to the layers also shows curious density-dependent behavior. When the cavity mode is tuned energetically above the exciton resonance, the upper-polariton peak is weaker (stronger) than the lower-polariton peak at low (high) carrier densities. This crossover occurs at a carrier density less than a factor of two below that for lasing threshold. This behavior is in good agreement with a full quantum mechanic description for both light and carrier, where the mutual Coulomb interaction of carriers is included.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. H.M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, Orlando, 1985).

    Google Scholar 

  2. N. Peyghambarian, S.W. Koch, and A. Mysyrowicz, Introduction to Semiconductor Optics (Prentice Hall, New Jersey, 1993)

    Google Scholar 

  3. See, e. g., H. Haug and S.W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific Publ., Singapore, 1994) 3rd ed.

    MATH  Google Scholar 

  4. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, Phys. Rev. Lett. 69, 3314 (1992).

    Article  ADS  Google Scholar 

  5. L.W. Casperson, IEEE J. Quant. Elect. QE-14, 756 (1978).

    Article  ADS  Google Scholar 

  6. Reviewed by H.J. Kimble in Cavity Quantum Electrodynamics, edited by P.R. Berman (Academic Press, San Diego, 1994).

    Google Scholar 

  7. F. Jahnke, M. Kira, S.W. Koch, G. Khitrova, E.K. Lindmark, T.R. Nelson, Jr., D.V. Wick, J.D. Berger, O. Lyngnes, H.M. Gibbs, and K. Tai, Phys. Rev. Lett. 77, 5257 (1996).

    Article  ADS  Google Scholar 

  8. E.T. Jaynes, and F.W. Cummings, Proc. IEEE 51, 89 (1963).

    Article  Google Scholar 

  9. R.J. Thompson, G. Rempe, and H.J. Kimble Phys. Rev. Lett. 68, 1132 (1992).

    Article  ADS  Google Scholar 

  10. F. Jahnke, M. Kira, and S.W. Koch, Linear and Nonlinear Optical Properties of Quantum Confined Excitons in Semiconductor Microcavities, Z. Phys. B, to be published.

    Google Scholar 

  11. F. Jahnke in this volume.

    Google Scholar 

  12. M. Kira, F. Jahnke, S.W. Koch, J.D. Berger, D.V. Wick, T.R. Nelson, Jr., O. Lyngnes, G. Khitrova, and H.M. Gibbs, Quantum Theory of Nonlinear Semiconductor Microcavity Luminescense Explaining “Boser” Experiments, Phys. Rev. Lett., to be published.

    Google Scholar 

  13. Y. Zhu, D.J. Gauthier, S.E. Morin, Q. Wu, H.J. Carmichael, and T.W. Mossberg, Phys. Rev. Lett. 64, 2499 (1990).

    Article  ADS  Google Scholar 

  14. R. Houdré, J.L. Gibernon, P. Pellandini, R.P. Stanley, U. Oesterle, C. Weisbuch, J. O'Gorman, and B. Roycroft, Phys. Rev. B 52, 7810 (1995).

    Article  ADS  Google Scholar 

  15. J.-K. Rhee, D.S. Citrin, T.B. Norris, Y. Arakawa, and M. Nishioka, Solid State Commun. 97, 941 (1996).

    Article  ADS  Google Scholar 

  16. The nonlinear behavior here is different from Refs. [14, 15] because the inhomogeneous broadening here is much smaller than the NMC splitting so that the homogeneous broadening can have such a dramatic effect on the two transmission peaks before loss of oscillator strength.

    Google Scholar 

  17. O. Lyngnes, J.D. Berger, J.P. Prineas, S. Park, G. Khitrova, H.M. Gibbs, F. Jahnke, M. Kira, and S.W. Koch, Nonlinear Emission Dynamics from Semiconductor Microcavities in the Nonperturbative Regime, Solid State Commun., to be published.

    Google Scholar 

  18. R. Houdré, C. Weisbuch, R.P. Stanley, U. Oesterle, P. Pellandini, and M. Ilegems, Phys. Rev. Lett. 73, 2043 (1994).

    Article  ADS  Google Scholar 

  19. J.D. Berger, S. Hallstein, W.W. Rühle, O. Lyngnes, G. Khitrova, H.M. Gibbs, M. Kira, F. Jahnke, and S.W. Koch, Quantum Optoelectronics Conference, Incline, Nevada (March 1997).

    Google Scholar 

  20. A. Imamoglu, R.J. Ram, S. Pau, and Y. Yamamoto, Phys. Rev. A 53, 4250 (1996).

    Article  ADS  Google Scholar 

  21. S. Pau, H. Cao, J. Jacobson, G. Björk, Y. Yamamoto, and A. Imamoglu, Phys. Rev. A 54, R1789 (1996).

    Article  ADS  Google Scholar 

  22. D.W. Snoke, W.W. Rühle, Y.-C. Lu, and E. Bauser, Phys. Rev. Lett. 68, 990 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Reinhard Helbig

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH

About this paper

Cite this paper

Gibbs, H.M. et al. (1998). Nonlinear semiconductor microcavity reflectance and photoluminescence from normal-mode coupling to lasing. In: Helbig, R. (eds) Advances in Solid State Physics 37. Advances in Solid State Physics, vol 37. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0108247

Download citation

  • DOI: https://doi.org/10.1007/BFb0108247

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-41574-9

  • Online ISBN: 978-3-540-44556-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics