Instabilities in semiconductors: Domains, filaments, chaos

Part of the Advances in Solid State Physics book series (ASSP, volume 26)


Bulk negative differetial conductivity in semiconductors can be induced by negative differential mobility as well as by non-equilibrium generation and recombination processes, in particular impact ionization of impurities. The, resulting instabilities lead to the spontaneous formation of dissipative structures: dipole field domains, current filaments, periodic or chaotic oscillations. We discuss these different types of non-linear dynamics and their bifurcation behaviour, and derive analytical conditions for their onset in a phenomenological macroscopic theory. In particular, anomalous domain formation in SNDC elements and self-generated oscillations and chaos in semiconductors are discussed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    F. Stöckmann, in: Festkörperprobleme: Advances in Solid State Physics, ed. by O. Madelung (Vieweg, Braunschweig 1969), Vol. IX, p. 138Google Scholar
  2. [2]
    A. F. Volkov and Sh. M. Kogan, Sov. Phys. Usp. 11, 881 (1969)CrossRefADSGoogle Scholar
  3. [3]
    H. Hartnagel, Semiconductor Plasma Instabilities (Elsevier Publishing Company, New York 1969)Google Scholar
  4. [4]
    H. Thomas, in: Synergetics, ed. by H. Haken (Teubner, Stuttgart 1973), p. 87. H. Thomas, in: Cooperative Effects, ed. by H. Haken (North Holland, Amsterdam 1974), pp. 171Google Scholar
  5. [5]
    V. L. Bonch-Bruevich, I. P. Zvyagin, and A. G. Mironov, Domain Electrical Instabilities in Semiconductors (Consultant Bureau, New York 1975)Google Scholar
  6. [6]
    M. P. Shaw, H. L. Grubin and P. Solomon, The Gunn Hilsum Effect (Academic Press, New York 1979)Google Scholar
  7. [7]
    J. Pozhela, Plasma and Current Instabilities in Semiconductors (Pergamon press, Oxford 1981)Google Scholar
  8. [8]
    M. Asche, Z. S. Gribnikow, V. V. Mitin, and O. G. Sarbei, Hot Electrons in Many-Valley Semiconductors (in Russ.) (Naukova Dumka, Kiev 1982)Google Scholar
  9. [9]
    M. P. Shaw and N. Yildirim, Adv. Electr. Electron Phys. 60, 307 (1983)Google Scholar
  10. [10]
    C. L. Dick and B. Ancker-Johnson, Phys. Rev. B5, 526 (1972)CrossRefADSGoogle Scholar
  11. [11]
    E. Schöll, Nonequilibrium Phase Transitions in Semiconductors (Springer Series in Synergetics, Berlin, Heidelberg) to be publishedGoogle Scholar
  12. [12]
    B. K. Ridley, Proc. Phys. Soc. 82, 954 (1963)CrossRefADSGoogle Scholar
  13. [13]
    E. Schöll, Proc. 17th Int. Conf. Physics of Semiconductors, San Francisco 1984, ed. by J. D. Chadi and W. Harrison (Springer New York 1985) p. 1353; Z. Phys. B—Condensed Matter 62, 245 (1986)Google Scholar
  14. [14]
    P. R. Solomon, M. P. Shaw, and H. L. Grubin, J. Appl. Phys. 43, 159 (1972)CrossRefADSGoogle Scholar
  15. [15]
    M. P. Shaw, H. L. Grubin, and I. J. Gastman, IEEE Trans. Electron Dev. ED-20, 169 (1973)CrossRefGoogle Scholar
  16. [16]
    M. A. Lampert and P. Mark, Current Injection in Solids (Academic Press, New York 1970)Google Scholar
  17. [17]
    P. T. Landsberg, D. J. Robbins, and E. Schöll, Phys. stat. sol. (a) 50, 423 (1978); 65, 353 (1981)CrossRefADSGoogle Scholar
  18. [18]
    E. Schöll, J. Physique Colloque C7, 57 (1981); Z. Phys. B46, 23 (1982), B48, 153 (1982), B52, 321 (1983)Google Scholar
  19. [19]
    K. Seeger, Solid State Comm. 53, 219 (1985)CrossRefADSGoogle Scholar
  20. [20]
    F. G. Bass, Yu. G. Gurevich, S. A. Kostylev, and N. A. Terent'eva, Sov. Phys. Semicond. 17, 808 (1983)Google Scholar
  21. [21]
    P. T. Landsberg, in Festkörperprobleme: Advances in Solid State Physics, ed. by O. Madelung (Vieweg, Braunschweig 1966) Vol. VI, p. 174 H. J. Hoffmann and F. Stöckmann, in Festkörperprobleme: Advances in Solid State Physics, ed. by J. Treusch (Vieweg, Braunschweig 1979), Vol. XIX, p. 271 P. T. Landsberg, in: Handbook on Semiconductors, ed. by T. S. Moss, Vol. I, Ch. 8 (North Holland, Amsterdam 1982)Google Scholar
  22. [22]
    R. S. Crandall, J. Phys. Chem. Solids 31, 2069 (1970); Phys. Rev. B1, 730 (1970)CrossRefADSGoogle Scholar
  23. [23]
    A. A. Kastalskij, phys. stat. sol. (a) 15, 599 (1973)CrossRefADSGoogle Scholar
  24. [24]
    A. G. Zabrodskij and I. S. Shlimak, Sov. Phys. Solid State 16, 1528 (1975)Google Scholar
  25. [25]
    W. Pickin, Solid State Electr. 21, 309, 1299 (1978)CrossRefADSGoogle Scholar
  26. [26]
    W. G. Proctor, P. Lawaetz, Y. Marfaing, and R. Triboulet, phys. stat. sol. (b) 110, 637 (1982)CrossRefADSGoogle Scholar
  27. [27]
    A. A. Sukhanov, Sov. Phys. Semiconductors 5, 1160 (1972)Google Scholar
  28. [28]
    M. Büttiker and H. Thomas, Phys. Rev. A24, 2635 (1981)CrossRefADSMathSciNetGoogle Scholar
  29. [29]
    H. L. Grubin, M. P. Shaw, and P. R. Solomon, IEEE Trans. Electr. Dev. ED-20, 63 (1973)CrossRefGoogle Scholar
  30. [30]
    E. Schöll, Physica 134B, 271 (1985); Phys. Rev. B, to be published (1986)Google Scholar
  31. [31]
    H. Lueder, W. Schottky, and E. Spenke, Naturwissenschaften 24, 61, (1936)CrossRefADSGoogle Scholar
  32. [32]
    P. N. Butcher, Phys. Lett. 19, 546 (1965)CrossRefADSMathSciNetGoogle Scholar
  33. [33]
    D. Adler, M. S. Shur, M. Silver, and S. R. Ovshinsky, J. Appl. Phys. 51, 3289 (1980)CrossRefADSGoogle Scholar
  34. [34]
    E. Schöll, Solid-State Electron n. 29, to be published (1986)Google Scholar
  35. [35]
    A. M. Barnett, Semicond. Semimetals 6, 141 (1970)MathSciNetCrossRefGoogle Scholar
  36. [36]
    W. Prettl, private communicationGoogle Scholar
  37. [37]
    H. Baumann, T. Pioch, H. Dahmen, and D. Jäger, BEDO 18, 133 (1985); SEM (to be published 1986); D. Jäger, H. Baumann, and R. Symanczyk, Phys. Lett. A, to be publishedGoogle Scholar
  38. [38]
    R. P. Huebener, private communicationGoogle Scholar
  39. [39]
    K. Aoki, T. Kobayashi, and K. Yamamoto, J. Physique Colloque C7, 51 (1981); J. Phys. Soc. Jap. 51, 2373 (1982); Physica 134B, 288 (1985)Google Scholar
  40. [40]
    G. N. Maracas, W. Porod, D. A. Johnson, D. K. Ferry, and H. Goronkin, Physica 134B, 276 (1985)Google Scholar
  41. [41]
    S. W. Teitsworth, R. M. Westervelt, and E. E. Haller, Phys. Rev. Lett. 51, 825 (1983)CrossRefADSGoogle Scholar
  42. [42]
    G. A. Held, C. Jeffries, and E. E. Haller, Phys. Rev. Lett. 52, 1037 (1984); G. A. Held and C. Jeffries, Phys. Rev. Lett. 55, 887 (1985); 56, 1183 (1986); in: Springer Series in Synergetics Vol. 32, ed. by G. Mayer-Kress (Springer, Berlin, Heidelberg, New York 1986)CrossRefADSGoogle Scholar
  43. [43]
    S. W. Teitsworth and R. M. Westervelt, Phys. Rev. Lett. 53, 2587 (1984); 56, 516 (1986)CrossRefADSGoogle Scholar
  44. [44]
    J. Peinke, A. Mühlbach, R. P. Huebener, and J. Parisi, Phys. Lett. 108A, 407 (1985); J. Peinke, B. Röhricht, A. Mühlbach, J. Parisi, Ch. Nöldeke, R. P. Huebener, and O. E. Rössler, Z. Naturforsch. 40a, 562 (1985); B. Röhricht, B. Wessely, J. Parisi, and J. Peinke, Appl. Phys. Lett. 48, 233 (1986); B. Röhricht, B. Wessely, J. Peinke, A. Mühlbach, J. Parisi, and R. P. Huebener, Physica 134B, 281 (1985)ADSGoogle Scholar
  45. [45]
    S. B. Bumeliene, Yu. K. Pozhela, K. A. Pyragas, and A. V. Tamaševičius Physica 134B, 293 (1985)Google Scholar
  46. [46]
    D. G. Seiler, C. L. Littler, R. J. Justice, and P. W. Milonni, Phys. Lett. 108A, 462 (1985)ADSGoogle Scholar
  47. [47]
    K. Nakamura, Progr. Theoret. Phys. 57, 1874 (1977)CrossRefADSGoogle Scholar
  48. [48]
    J. M. Wersinger, J. M. Finn, and E. Ott, Phys. Fluids 23, 1142 (1980)zbMATHCrossRefADSMathSciNetGoogle Scholar
  49. [49]
    K. A. Pyragas, Sov. Phys.-Semicond. 17, 652 (1983) [Fiz. Tekh. Poluprov. 17, 1035 (1983)]Google Scholar
  50. [50]
    E. Schöll, to be publishedGoogle Scholar
  51. [51]
    D. J. Robbins and P. T. Landsberg, J. Phys. C13, 2425 (1980); V. V. Mitin, Appl. Phys. A39, 123 (1986)CrossRefADSGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1986

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikRheinisch-Westfälische Technische HochschuleAachenFederal Republic of Germany

Personalised recommendations