Advertisement

Semiconductor physics in ultra-pure germanium

Chapter
Part of the Advances in Solid State Physics book series (ASSP, volume 26)

Abstract

The discovery of a large number of shallow and deep levels in ultra-pure germanium has led to a renewed interest in this elemental semiconductor. The new levels are created by complexes typically consisting of one substitutional impurity such as silicon, oxygen, carbon, beryllium, zinc, copper, etc. and one or more interstitial impurities such as hydrogen or lithium. The experimental techniques and results which have been used to determine the structure and composition of these centers are reviewed. One of the most intriguing features of the acceptor centers, an electronic ground-state which does not split under uniaxial compression, has been explained with a tunneling impurity model.

Double acceptors, helium analoga in semiconductors, have been investigated recently with IR spectra and photoluminescence. The new results indicate that contrary to earlier assumptions all double acceptors exhibit split ground-states, a consequence of the hole-hole interaction.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C. Winkler, J. f. praktische Chemie, Neue Folge 34, 177 (1886)Google Scholar
  2. [2]
    H. J. Queisser, Kristallene Krisen, (Piper, München 1985)Google Scholar
  3. [3]
    E. E. Haller, W. L. Hansen, and F. S. Goulding, Adv. in Physics 30, 93 (1981)CrossRefADSGoogle Scholar
  4. [4]
    W. L. Hansen and E. E. Haller, Mat. Res. Symp. Proc. 16, 1 (1983)Google Scholar
  5. [5]
    E. E. Haller and F. S. Goulding, Handbook on Semiconductors Vol. 4, Ch. 6, 799–827, ed. by C. Hilsum (North-Holland, Amsterdam 1981)Google Scholar
  6. [6]
    R. N. Hall, IEEE Trans. Nucl. Sci. NS-21, 260 (1974) and Inst. Phys. Conf. Series 23, 190 (1975)ADSCrossRefGoogle Scholar
  7. [7]
    N. M. Haegel and E. E. Haller, SPIE Conf. on Materials Techn. for IR Detectors, April 15–17 1986, Innsbruck, Austria, SPIE Proc. Vol. 659, in printGoogle Scholar
  8. [8]
    N. M. Haegel, PhD Thesis, UC Berkeley and Lawrence Berkeley Laboratory, LBL 20627Google Scholar
  9. [9]
    R. E. McMurray Jr., N. M. Haegel, J. M. Kahn, and E. E. Haller, Sol. State Cormm. in printGoogle Scholar
  10. [10]
    E. E. Haller, R. E. McMurray Jr., N. M. Haegel, and L. M. Falicov, Proc. 17th Int. Conf. Phys. of Semicond., ed. by J. D. Chadi and W. A. Harrisor (Springer, Berlin 1985), p. 679–682Google Scholar
  11. [11]
    V. V. Emtsev, T. V. Mashovets, E. Kh. Nazaryan, and E. E. Haller, Sov. Phys. Sermic. 16, 182 (1982)Google Scholar
  12. [12]
    N. Fukuoka and H. Saito, Physica 116B, 343 (1983)Google Scholar
  13. [13]
    N. Fukuoka and H. Saito, Jap. J. Appl. Phys. 23, 203 (1984)CrossRefADSGoogle Scholar
  14. [14]
    E. E. Haller, P. Po-Yee Li, G. S. Hubbard, and W. L. Hansen, IEEE Trans. Nucl. Sci. NS-26, No. 1, 265 (1979)ADSCrossRefGoogle Scholar
  15. [15]
    E. Simoen, P. Clauws, and J. Vennik, J. Phys. D: Appl. Phys. 18, 2041 (1985)CrossRefADSGoogle Scholar
  16. [16]
    L. J. van der Pauw, Phillips Res. Repts. 13, 1 (1958)Google Scholar
  17. [17]
    J. H. Yee, S. P. Swierkowski, G. A. Armantrout, and R. Wichner, J. Appl. Phys. 45, 3949 (1974)CrossRefADSGoogle Scholar
  18. [18]
    T. M. Lifshits and F. Ya. Nad, Sov. Phys.-Doklady 10, 532 (1965) for a review see: Sh. M. Kogan and T. M. Lifshits, phys. stat. sol. (a) 39, 11 (1977)Google Scholar
  19. [19]
    C. Kittel and A. H. Mitchell, Phys. Rev. 96, 1488 (1954)CrossRefADSGoogle Scholar
  20. [20]
    R. A. Faulkner, Phys. Rev. 184, 713 (1969)CrossRefADSGoogle Scholar
  21. [21]
    A. Baldereschi and N. O. Lipari, Phys. Rev. B 8, 2697 (1973); Phys. Rev. B9, 1525 (1974) and Proc. 13th Int. Conf. Phys. Semic., ed. by F. G. Fumi (North-Holland 1976), p. 595CrossRefADSGoogle Scholar
  22. [22]
    J. Broeckx, P. Clauws, and J. Vennik, J. Phys. C: Solid St. Physics, in printGoogle Scholar
  23. [23]
    A. K. Ramdas and S. Rodriguez, Rep. Prog. Phys. 44, 1297 (1981)CrossRefADSGoogle Scholar
  24. [24]
    B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors, Solid State Sciences, Vol. 45 (Springer, Berlin 1984)Google Scholar
  25. [25]
    Sh. m. Kogan, Sov. Phys. Semicond. 1, 828 (1973)Google Scholar
  26. [26]
    A. S. Barker and A. J. Sievers, Rev. Mod. Phys. 47, Suppl. 2, 1 (1975)CrossRefGoogle Scholar
  27. [27]
    R. N. Hall and J. H. Racette, J. Appl. Phys. 35, 379 (1964)CrossRefADSGoogle Scholar
  28. [28]
    G. Dearnaley, J. H. Freeman, G. A. Gard, and M. A. Wilkins, Can. J. Phys. 46, 587 (1968)ADSGoogle Scholar
  29. [29]
    see: Table of Isotopes, ed. by C. M. Lederer and V. S. Shirley, (7th ed., Wiley, New York 1978)Google Scholar
  30. [30]
    C. Sonntag, H. Rebel, B. Ribbat, S. K. Thio, and W. R. Gramm, Lett. Nuovo Cim. IV, 717 (1970)CrossRefGoogle Scholar
  31. [31]
    M. Hansen and K. Anderko, Constitution of Binary Alloys (McGraw-Hill, New York 1958)Google Scholar
  32. [32]
    E. E. Haller, W. L. Hansen, P. Luke, R. McMurray Jr., and B. Jarret, IEEE Trans. Nucl. Sci. NS-29, No. 1, 745 (1982).ADSCrossRefGoogle Scholar
  33. [33]
    P. N. Luke and E. E. Haller, J. Appl. Phys. in printGoogle Scholar
  34. [34]
    E. Gatti and P. Rehak, Nucl. Instr. and Methods 225, No.3, 608 (1984)CrossRefGoogle Scholar
  35. [35]
    J. Martin and E. Haas, Sol. State Electr. 11, 993 (1968)CrossRefADSGoogle Scholar
  36. [36]
    W. L. Hansen, E. E. Haller, and P. N. Luke, IEEE Trans. Nucl. Sci. NS-29, No. 1, 738 (1982)CrossRefADSGoogle Scholar
  37. [37]
    E. E. Haller, Phys. Rev. Lett. 40, 584 (1978)CrossRefADSGoogle Scholar
  38. [38]
    E. E. Haller and L. M. Falicov, Phys. Rev. Lett. 41, 1192 (1978) and Inst. Phys. Conf. Ser. 43, 1039 (1979)CrossRefADSGoogle Scholar
  39. [39]
    L. M. Falicov and E. E. Haller, Solid State Comm. 53, 1121 (1985)CrossRefADSGoogle Scholar
  40. [40]
    B. Joos, E. E. Haller, and L. M. Falicov, Phys. Rev. B 22, 832 (1980)CrossRefADSGoogle Scholar
  41. [41]
    J. Broeckx, P. Clauws, and J. Vennik, J. Phys. C: Solid St. Physics 13, L141 (1980)CrossRefADSGoogle Scholar
  42. [42]
    E. E. Haller, G. S. Hubbard, W. L. Hansen, and A. Seeger, Inst. Phys. Conf. Ser. 31, 309 (1977)Google Scholar
  43. [43]
    N. M. Haegel, E. E. Haller, and P. Luke, Int. J. Infrared and MM Waves 4, No. 6, 945 (1983)CrossRefADSGoogle Scholar
  44. [44]
    E. E. Haller, Infrared Physics 25, 257, (1985)CrossRefADSGoogle Scholar
  45. [45]
    R. E. McMurray Jr., N. M. Haegel, J. M. Kahn, and E. E. Haller, Solid State Comm. 53, 1137 (1985)CrossRefADSGoogle Scholar
  46. [46]
    H. Reiss, C. S. Fuller, and F. J. Morin, Bell Syst. Tech. J. 35, 535 (1956)Google Scholar
  47. [47]
    C. Kittel and J. Wang, Phys. Rev. B 7, 713 (1973)CrossRefADSGoogle Scholar
  48. [48]
    J. I. Pankove, P. J. Zan Zucchi, C. W. Magee, and G. Lucovsky, Appl. Phys. Lett. 46, 421 (1985)CrossRefADSGoogle Scholar
  49. [49]
    C. S. Fuller and J. C. Severins, Phys. Rev. 96, 21 (1954)CrossRefADSGoogle Scholar
  50. [50]
    A. Schenck, Muon Spin Rotation Spectroscopy (Adam Hilger, Bristol 1985) and references thereinGoogle Scholar
  51. [51]
    S. F. J. Cox and M. C. R. Symon, Chem. Phys. Lett., in print; also Rutherford Appleton Lab. Report RAL-85-114Google Scholar
  52. [52]
    G. Flik, J. Bradbury, W. Cooke, R. Heffner, M. Leon, M. Paciotti, M. Schillaci, K. Maier, H. Rempp, J. Reidy, C. Boekema, and H. Daniel, Phys. Rev. Lett., to be publishedGoogle Scholar
  53. [53]
    F. Hashimoto and Y. Kamiura, Jap. J. Appl. Phys. 13, 762 (1974)CrossRefADSGoogle Scholar
  54. [54]
    Y. Kamiura, F. Hashimoto, T. Takada, Y. Sakaji, and T. Hattori, Inst. Phys. Conf. Ser. 59, 182 (1981)Google Scholar
  55. [55]
    J. Broeckx, Y. Kamiura, P. Clauws, and J. Vennik, Solid State Commun. 43, 499 (1982)CrossRefADSGoogle Scholar
  56. [56]
    Y. Kamiura and F. Hashimoto, phys. stat. sol. (a) 85, 227 (1984)CrossRefADSGoogle Scholar
  57. [57]
    see papers in Proc. 13th Int. Conf. on Defects in Semiconductors, ed by L. C. Kimmerling and J. M. Parsey Jr., AIME Publ. 14a, (1985)Google Scholar
  58. [58]
    P. Clauws and J. Vennik, Phys. Rev. B 30, 4837 (1984)CrossRefADSGoogle Scholar
  59. [59]
    P. Clauws, E. Simoen, and J. Vennik, Proc. 13th Int. Conf. on Defects in Semic., ed. by L. C. Kimmerling and J. M. Parsey Jr. (AIME Publ. 14a, 1985), p. 911Google Scholar
  60. [60]
    E. E. Haller and R. E. McMurray Jr., Physica 116B + C, 349 (1983)ADSGoogle Scholar
  61. [61]
    J. W. Cross, L. T. Ho, A. K. Ramdas, R. Sauer, and E. E. Haller, Phys. Rev. B 28, 6953 (1983)CrossRefADSGoogle Scholar
  62. [62]
    R. A. Chapman and W. G. Hutchinson, Phys. Rev. 157, 615 (1967); and Solid State Comm. 3, 293 (1965)CrossRefADSGoogle Scholar
  63. [63]
    J. W. Cross, C. R. La Brec, S. Rodriguez, A. K. Ramdas, and E. E. Haller, Phys. Rev. B 32, 7992 (1985)CrossRefADSGoogle Scholar
  64. [64]
    W. J. Moore, Phys. Rev. B 29, 7062 (1984)CrossRefADSGoogle Scholar
  65. [65]
    N. R. Butler and P. Fisher, Phys. Rev. B 13, 5465 (1976)CrossRefADSGoogle Scholar
  66. [66]
    For a review on BE and BMEC in silicon see: M. L. W. Thewalt, in “Excitons”, ed. by E. I. Rashba and M. D. Sturge (North-Holland, Amsterdam 1982), p. 393–458Google Scholar
  67. [67]
    G. C. Osborn and D. L. Smith, Phys. Rev. B 16, 5426 (1977)CrossRefADSGoogle Scholar
  68. [68]
    R. Sauer and J. Weber, J. Phys. C: Solid State Phys. 17, 1421 (1984)CrossRefADSGoogle Scholar
  69. [69]
    M. L. W. Thewalt, E. C. Lightowlers, and E. E. Haller, Solid State Commun. 54, 1043 (1985)CrossRefADSGoogle Scholar
  70. [70]
    H. Nakata, T. Yodo, and E. Otsuka, Solid State Commun. 45, 55 (1983)CrossRefADSGoogle Scholar
  71. [71]
    H. Nakata and E. Otsuka, J. Phys. Soc. Japan, 55, 391 (1986), in printCrossRefADSGoogle Scholar
  72. [72]
    M. L. W. Thewalt, D. Labrie, E. C. Lightowlers, and E. E. Haller, Solid State Commun., to be publishedGoogle Scholar
  73. [73]
    M. L. W. Thewalt, D. Labrie, and B. P. Clayman, Solid State Commun. 56, 751 (1985)CrossRefADSGoogle Scholar
  74. [74]
    H. Nakata, E. Otsuka, and E. E. Haller, Jap. J. Appl. Phys. 25, L57 (1986)CrossRefADSGoogle Scholar
  75. [75]
    M. L. W. Thewalt, B. P. Clayman, and D. Labrie, Phys. Rev. B 32, 2663 (1985)CrossRefADSGoogle Scholar
  76. [76]
    E. E. Haller, R. E. McMurray Jr., L. M. Falicov, N. M. Haegel, and W. L. Hansen, Phys. Rev. Lett. 51, 1089 (1983)CrossRefADSGoogle Scholar
  77. [77]
    E. E. Haller, R. E. McMurray Jr., N. M. Haegel, and L. M. Falicov, Proc. 17th Int. Conf. Phys. Semic., ed. by J. D. Chadi and W. A. Harrison (Springer, New York 1985), p. 679–682Google Scholar
  78. [78]
    R. E. McMurray Jr., Sol. State Commun. 53, 1127 (1985)CrossRefADSGoogle Scholar
  79. [79]
    E. E. Haller, Proc. Mat. Res. Soc. Vol. 46, 495 (1985)Google Scholar
  80. [80]
    S. J. Pearton, Proc. Mat. Res. Soc. Vol. 59 (1986), in printGoogle Scholar
  81. [81]
    S. J. Pearton, E. E. Haller, and A. G. Elliott, Electron. Lett. 19, No. 24, 1052 (1983)CrossRefADSGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1986

Authors and Affiliations

  1. 1.Max-Planck-Institute for Solid State ResearchStuttgart 80Federal Republic of Germany
  2. 2.University of CaliforniaBerkeleyUSA

Personalised recommendations