Skip to main content

Semiconductor physics in ultra-pure germanium

  • Chapter
  • First Online:
Festkörperprobleme 26

Part of the book series: Advances in Solid State Physics ((ASSP,volume 26))

Abstract

The discovery of a large number of shallow and deep levels in ultra-pure germanium has led to a renewed interest in this elemental semiconductor. The new levels are created by complexes typically consisting of one substitutional impurity such as silicon, oxygen, carbon, beryllium, zinc, copper, etc. and one or more interstitial impurities such as hydrogen or lithium. The experimental techniques and results which have been used to determine the structure and composition of these centers are reviewed. One of the most intriguing features of the acceptor centers, an electronic ground-state which does not split under uniaxial compression, has been explained with a tunneling impurity model.

Double acceptors, helium analoga in semiconductors, have been investigated recently with IR spectra and photoluminescence. The new results indicate that contrary to earlier assumptions all double acceptors exhibit split ground-states, a consequence of the hole-hole interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Winkler, J. f. praktische Chemie, Neue Folge 34, 177 (1886)

    Google Scholar 

  2. H. J. Queisser, Kristallene Krisen, (Piper, München 1985)

    Google Scholar 

  3. E. E. Haller, W. L. Hansen, and F. S. Goulding, Adv. in Physics 30, 93 (1981)

    Article  ADS  Google Scholar 

  4. W. L. Hansen and E. E. Haller, Mat. Res. Symp. Proc. 16, 1 (1983)

    Google Scholar 

  5. E. E. Haller and F. S. Goulding, Handbook on Semiconductors Vol. 4, Ch. 6, 799–827, ed. by C. Hilsum (North-Holland, Amsterdam 1981)

    Google Scholar 

  6. R. N. Hall, IEEE Trans. Nucl. Sci. NS-21, 260 (1974) and Inst. Phys. Conf. Series 23, 190 (1975)

    Article  ADS  Google Scholar 

  7. N. M. Haegel and E. E. Haller, SPIE Conf. on Materials Techn. for IR Detectors, April 15–17 1986, Innsbruck, Austria, SPIE Proc. Vol. 659, in print

    Google Scholar 

  8. N. M. Haegel, PhD Thesis, UC Berkeley and Lawrence Berkeley Laboratory, LBL 20627

    Google Scholar 

  9. R. E. McMurray Jr., N. M. Haegel, J. M. Kahn, and E. E. Haller, Sol. State Cormm. in print

    Google Scholar 

  10. E. E. Haller, R. E. McMurray Jr., N. M. Haegel, and L. M. Falicov, Proc. 17th Int. Conf. Phys. of Semicond., ed. by J. D. Chadi and W. A. Harrisor (Springer, Berlin 1985), p. 679–682

    Google Scholar 

  11. V. V. Emtsev, T. V. Mashovets, E. Kh. Nazaryan, and E. E. Haller, Sov. Phys. Sermic. 16, 182 (1982)

    Google Scholar 

  12. N. Fukuoka and H. Saito, Physica 116B, 343 (1983)

    Google Scholar 

  13. N. Fukuoka and H. Saito, Jap. J. Appl. Phys. 23, 203 (1984)

    Article  ADS  Google Scholar 

  14. E. E. Haller, P. Po-Yee Li, G. S. Hubbard, and W. L. Hansen, IEEE Trans. Nucl. Sci. NS-26, No. 1, 265 (1979)

    Article  ADS  Google Scholar 

  15. E. Simoen, P. Clauws, and J. Vennik, J. Phys. D: Appl. Phys. 18, 2041 (1985)

    Article  ADS  Google Scholar 

  16. L. J. van der Pauw, Phillips Res. Repts. 13, 1 (1958)

    Google Scholar 

  17. J. H. Yee, S. P. Swierkowski, G. A. Armantrout, and R. Wichner, J. Appl. Phys. 45, 3949 (1974)

    Article  ADS  Google Scholar 

  18. T. M. Lifshits and F. Ya. Nad, Sov. Phys.-Doklady 10, 532 (1965) for a review see: Sh. M. Kogan and T. M. Lifshits, phys. stat. sol. (a) 39, 11 (1977)

    Google Scholar 

  19. C. Kittel and A. H. Mitchell, Phys. Rev. 96, 1488 (1954)

    Article  ADS  Google Scholar 

  20. R. A. Faulkner, Phys. Rev. 184, 713 (1969)

    Article  ADS  Google Scholar 

  21. A. Baldereschi and N. O. Lipari, Phys. Rev. B 8, 2697 (1973); Phys. Rev. B9, 1525 (1974) and Proc. 13th Int. Conf. Phys. Semic., ed. by F. G. Fumi (North-Holland 1976), p. 595

    Article  ADS  Google Scholar 

  22. J. Broeckx, P. Clauws, and J. Vennik, J. Phys. C: Solid St. Physics, in print

    Google Scholar 

  23. A. K. Ramdas and S. Rodriguez, Rep. Prog. Phys. 44, 1297 (1981)

    Article  ADS  Google Scholar 

  24. B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors, Solid State Sciences, Vol. 45 (Springer, Berlin 1984)

    Google Scholar 

  25. Sh. m. Kogan, Sov. Phys. Semicond. 1, 828 (1973)

    Google Scholar 

  26. A. S. Barker and A. J. Sievers, Rev. Mod. Phys. 47, Suppl. 2, 1 (1975)

    Article  Google Scholar 

  27. R. N. Hall and J. H. Racette, J. Appl. Phys. 35, 379 (1964)

    Article  ADS  Google Scholar 

  28. G. Dearnaley, J. H. Freeman, G. A. Gard, and M. A. Wilkins, Can. J. Phys. 46, 587 (1968)

    ADS  Google Scholar 

  29. see: Table of Isotopes, ed. by C. M. Lederer and V. S. Shirley, (7th ed., Wiley, New York 1978)

    Google Scholar 

  30. C. Sonntag, H. Rebel, B. Ribbat, S. K. Thio, and W. R. Gramm, Lett. Nuovo Cim. IV, 717 (1970)

    Article  Google Scholar 

  31. M. Hansen and K. Anderko, Constitution of Binary Alloys (McGraw-Hill, New York 1958)

    Google Scholar 

  32. E. E. Haller, W. L. Hansen, P. Luke, R. McMurray Jr., and B. Jarret, IEEE Trans. Nucl. Sci. NS-29, No. 1, 745 (1982).

    Article  ADS  Google Scholar 

  33. P. N. Luke and E. E. Haller, J. Appl. Phys. in print

    Google Scholar 

  34. E. Gatti and P. Rehak, Nucl. Instr. and Methods 225, No.3, 608 (1984)

    Article  Google Scholar 

  35. J. Martin and E. Haas, Sol. State Electr. 11, 993 (1968)

    Article  ADS  Google Scholar 

  36. W. L. Hansen, E. E. Haller, and P. N. Luke, IEEE Trans. Nucl. Sci. NS-29, No. 1, 738 (1982)

    Article  ADS  Google Scholar 

  37. E. E. Haller, Phys. Rev. Lett. 40, 584 (1978)

    Article  ADS  Google Scholar 

  38. E. E. Haller and L. M. Falicov, Phys. Rev. Lett. 41, 1192 (1978) and Inst. Phys. Conf. Ser. 43, 1039 (1979)

    Article  ADS  Google Scholar 

  39. L. M. Falicov and E. E. Haller, Solid State Comm. 53, 1121 (1985)

    Article  ADS  Google Scholar 

  40. B. Joos, E. E. Haller, and L. M. Falicov, Phys. Rev. B 22, 832 (1980)

    Article  ADS  Google Scholar 

  41. J. Broeckx, P. Clauws, and J. Vennik, J. Phys. C: Solid St. Physics 13, L141 (1980)

    Article  ADS  Google Scholar 

  42. E. E. Haller, G. S. Hubbard, W. L. Hansen, and A. Seeger, Inst. Phys. Conf. Ser. 31, 309 (1977)

    Google Scholar 

  43. N. M. Haegel, E. E. Haller, and P. Luke, Int. J. Infrared and MM Waves 4, No. 6, 945 (1983)

    Article  ADS  Google Scholar 

  44. E. E. Haller, Infrared Physics 25, 257, (1985)

    Article  ADS  Google Scholar 

  45. R. E. McMurray Jr., N. M. Haegel, J. M. Kahn, and E. E. Haller, Solid State Comm. 53, 1137 (1985)

    Article  ADS  Google Scholar 

  46. H. Reiss, C. S. Fuller, and F. J. Morin, Bell Syst. Tech. J. 35, 535 (1956)

    Google Scholar 

  47. C. Kittel and J. Wang, Phys. Rev. B 7, 713 (1973)

    Article  ADS  Google Scholar 

  48. J. I. Pankove, P. J. Zan Zucchi, C. W. Magee, and G. Lucovsky, Appl. Phys. Lett. 46, 421 (1985)

    Article  ADS  Google Scholar 

  49. C. S. Fuller and J. C. Severins, Phys. Rev. 96, 21 (1954)

    Article  ADS  Google Scholar 

  50. A. Schenck, Muon Spin Rotation Spectroscopy (Adam Hilger, Bristol 1985) and references therein

    Google Scholar 

  51. S. F. J. Cox and M. C. R. Symon, Chem. Phys. Lett., in print; also Rutherford Appleton Lab. Report RAL-85-114

    Google Scholar 

  52. G. Flik, J. Bradbury, W. Cooke, R. Heffner, M. Leon, M. Paciotti, M. Schillaci, K. Maier, H. Rempp, J. Reidy, C. Boekema, and H. Daniel, Phys. Rev. Lett., to be published

    Google Scholar 

  53. F. Hashimoto and Y. Kamiura, Jap. J. Appl. Phys. 13, 762 (1974)

    Article  ADS  Google Scholar 

  54. Y. Kamiura, F. Hashimoto, T. Takada, Y. Sakaji, and T. Hattori, Inst. Phys. Conf. Ser. 59, 182 (1981)

    Google Scholar 

  55. J. Broeckx, Y. Kamiura, P. Clauws, and J. Vennik, Solid State Commun. 43, 499 (1982)

    Article  ADS  Google Scholar 

  56. Y. Kamiura and F. Hashimoto, phys. stat. sol. (a) 85, 227 (1984)

    Article  ADS  Google Scholar 

  57. see papers in Proc. 13th Int. Conf. on Defects in Semiconductors, ed by L. C. Kimmerling and J. M. Parsey Jr., AIME Publ. 14a, (1985)

    Google Scholar 

  58. P. Clauws and J. Vennik, Phys. Rev. B 30, 4837 (1984)

    Article  ADS  Google Scholar 

  59. P. Clauws, E. Simoen, and J. Vennik, Proc. 13th Int. Conf. on Defects in Semic., ed. by L. C. Kimmerling and J. M. Parsey Jr. (AIME Publ. 14a, 1985), p. 911

    Google Scholar 

  60. E. E. Haller and R. E. McMurray Jr., Physica 116B + C, 349 (1983)

    ADS  Google Scholar 

  61. J. W. Cross, L. T. Ho, A. K. Ramdas, R. Sauer, and E. E. Haller, Phys. Rev. B 28, 6953 (1983)

    Article  ADS  Google Scholar 

  62. R. A. Chapman and W. G. Hutchinson, Phys. Rev. 157, 615 (1967); and Solid State Comm. 3, 293 (1965)

    Article  ADS  Google Scholar 

  63. J. W. Cross, C. R. La Brec, S. Rodriguez, A. K. Ramdas, and E. E. Haller, Phys. Rev. B 32, 7992 (1985)

    Article  ADS  Google Scholar 

  64. W. J. Moore, Phys. Rev. B 29, 7062 (1984)

    Article  ADS  Google Scholar 

  65. N. R. Butler and P. Fisher, Phys. Rev. B 13, 5465 (1976)

    Article  ADS  Google Scholar 

  66. For a review on BE and BMEC in silicon see: M. L. W. Thewalt, in “Excitons”, ed. by E. I. Rashba and M. D. Sturge (North-Holland, Amsterdam 1982), p. 393–458

    Google Scholar 

  67. G. C. Osborn and D. L. Smith, Phys. Rev. B 16, 5426 (1977)

    Article  ADS  Google Scholar 

  68. R. Sauer and J. Weber, J. Phys. C: Solid State Phys. 17, 1421 (1984)

    Article  ADS  Google Scholar 

  69. M. L. W. Thewalt, E. C. Lightowlers, and E. E. Haller, Solid State Commun. 54, 1043 (1985)

    Article  ADS  Google Scholar 

  70. H. Nakata, T. Yodo, and E. Otsuka, Solid State Commun. 45, 55 (1983)

    Article  ADS  Google Scholar 

  71. H. Nakata and E. Otsuka, J. Phys. Soc. Japan, 55, 391 (1986), in print

    Article  ADS  Google Scholar 

  72. M. L. W. Thewalt, D. Labrie, E. C. Lightowlers, and E. E. Haller, Solid State Commun., to be published

    Google Scholar 

  73. M. L. W. Thewalt, D. Labrie, and B. P. Clayman, Solid State Commun. 56, 751 (1985)

    Article  ADS  Google Scholar 

  74. H. Nakata, E. Otsuka, and E. E. Haller, Jap. J. Appl. Phys. 25, L57 (1986)

    Article  ADS  Google Scholar 

  75. M. L. W. Thewalt, B. P. Clayman, and D. Labrie, Phys. Rev. B 32, 2663 (1985)

    Article  ADS  Google Scholar 

  76. E. E. Haller, R. E. McMurray Jr., L. M. Falicov, N. M. Haegel, and W. L. Hansen, Phys. Rev. Lett. 51, 1089 (1983)

    Article  ADS  Google Scholar 

  77. E. E. Haller, R. E. McMurray Jr., N. M. Haegel, and L. M. Falicov, Proc. 17th Int. Conf. Phys. Semic., ed. by J. D. Chadi and W. A. Harrison (Springer, New York 1985), p. 679–682

    Google Scholar 

  78. R. E. McMurray Jr., Sol. State Commun. 53, 1127 (1985)

    Article  ADS  Google Scholar 

  79. E. E. Haller, Proc. Mat. Res. Soc. Vol. 46, 495 (1985)

    Google Scholar 

  80. S. J. Pearton, Proc. Mat. Res. Soc. Vol. 59 (1986), in print

    Google Scholar 

  81. S. J. Pearton, E. E. Haller, and A. G. Elliott, Electron. Lett. 19, No. 24, 1052 (1983)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

P. Grosse

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH

About this chapter

Cite this chapter

Haller, E.E. (1986). Semiconductor physics in ultra-pure germanium. In: Grosse, P. (eds) Festkörperprobleme 26. Advances in Solid State Physics, vol 26. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0107798

Download citation

  • DOI: https://doi.org/10.1007/BFb0107798

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-528-08032-7

  • Online ISBN: 978-3-540-75359-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics