Skip to main content

Light induced magnetization in semiconductors

  • Chapter
  • First Online:
Festkörperprobleme 26

Part of the book series: Advances in Solid State Physics ((ASSP,volume 26))

Abstract

The absorption of circularly polarized light leads to a partial spin orientation (with respect to the propagation direction of radiation) of excited carriers in a direct gap semiconductor. Even for diamagnetic or diluted paramagnetic crystals, this optically induced spin-polarization is associated with a macroscopic magnetization due to the oriented magnetic spin moments. Since this effect is rather small, the light induced mangetization is determined by a novel combination of the method of optical pumping with a superconducting quantum interference detection. Several narrow gap semiconductors (InSb, Hg1−xCdxTe, Hg1−xMnxTe) were investigated, and the decisive role of band-structure details for the distribution of the initially oriented spins is discussed in detail. For the semimagnetic semiconductors, the effect of exchange interaction between the mobile carriers and the localized 3d-electrons of Mn2+-ions is considered. In addition the relative importance of the various spin-relaxation channels is treated within the framework of relaxation time models. The basic differences between this effect and other photomagnetization effects is stressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Krenn, W. Zawadzski, and G. Bauer, Phys. Rev. Lett. 55, 1510 (1985)

    Article  ADS  Google Scholar 

  2. D. D. Awschalom, J.-M. Halbout, S. von Molnar, T. Siegrist, and F. Holtzberg, Phys. Rev. Lett. 55, 1129 (1985)

    Article  ADS  Google Scholar 

  3. R. R. Galazka and J. Kossut, in: Narrow Gap Semiconductors, Physics and Applications, Lecture Notes in Physics, Vol. 133, ed. by W. Zawadzki, (Springer, Berlin 1980), p. 245

    Chapter  Google Scholar 

  4. J. K. Furdyna, J. Appl. Phys. 53, 7637 (1982)

    Article  ADS  Google Scholar 

  5. N. B. Brandt and V. V. Moshchalkov, Adv. Phys. 33, 193 (1984)

    Article  ADS  Google Scholar 

  6. C. Weisbuch and C. Hermann, Phys. Rev. B15, 816 (1977)

    Article  ADS  Google Scholar 

  7. C. Hermann and G. Lampel, Phys. Rev. Lett. 27, 373 (1971)

    Article  ADS  Google Scholar 

  8. M. I. D'yakonov and V. I. Perel', Sov. Phys. JETP 33, 1053 (1971)

    ADS  Google Scholar 

  9. E. O. Kane, in: Narrow Gap Semiconductors, Physics and Applications, Lecture Notes in Physics, Vol. 133, ed. by W. Zawadzki (Springer, Berlin 1980), p. 13

    Chapter  Google Scholar 

  10. J. Kossut, phys. stat. sol. (b) 72, 359 (1975)

    Article  ADS  Google Scholar 

  11. M. I. D'yakonov and V. I. Perel', Sov. Phys.-Sol. State 13, 3023 (1972)

    Google Scholar 

  12. G. Dresselhaus, Phys. Rev. 100, 580 (1955)

    Article  MATH  ADS  Google Scholar 

  13. G. E. Pikus and A. N. Titkov in: Optical Orientation, Modern Problems in Condensed Matter Sciences, Vol. 8, ed. by V. M. Agranovich and A. A. Maradudin, (North-Holland, Amsterdam 1984), p. 87

    Google Scholar 

  14. A. Abragam and B. Bleaney, in: Electron Paramagnetic Resonance of Transition Ions (Clarendon, Oxford 1970), p. 557

    Google Scholar 

  15. J. E. Zimmermann, P. Thiene, and J. T. Harding, J. Appl. Phys. 41, 1572 (1970)

    Article  ADS  Google Scholar 

  16. J. Clarke, Proc. of the IEEE 61, 8 (1973)

    Article  Google Scholar 

  17. R. P. Giffard, R. Webb, and J. C. Wheatley, J. Low Temp. Phys. 6, 533 (1971)

    Article  ADS  Google Scholar 

  18. R. E. Samwinski, Cryogenics 17, 671 (1977)

    Article  Google Scholar 

  19. W. Lems, P. J. Bongers, and U. Enz, Phys. Rev. Lett. 21, 1643 (1968)

    Article  ADS  Google Scholar 

  20. V. G. Veselago, E. S. Vigeleva, G. I. Vinogradova, and V. T. Kalinikov, V. E. Makhotkin, JETP Lett. 15, 223 (1972)

    ADS  Google Scholar 

  21. M. Ayadi and J. Ferré, Phys. Rev. Lett. 50, 274 (1973)

    Article  ADS  Google Scholar 

  22. J. P. van der Ziel, P. S. Pershan, and L. D. Malmstrom, Phys. Rev. Lett. 15, 190 (1965)

    Article  ADS  Google Scholar 

  23. R. W. Teale and D. W. Temple, Phys. Rev. Lett. 19, 904 (1967)

    Article  ADS  Google Scholar 

  24. N. Nisida, M. Kondo, and S. Ocki, Kotai Butsuri 18, 151 (1983)

    Google Scholar 

  25. L. S. Vlasenko, N. V. Zavaritskii, and V. G. Fleisher, Sov. Tech. Phys. Lett. 9, 592 (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

P. Grosse

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH

About this chapter

Cite this chapter

Krenn, H. (1986). Light induced magnetization in semiconductors. In: Grosse, P. (eds) Festkörperprobleme 26. Advances in Solid State Physics, vol 26. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0107797

Download citation

  • DOI: https://doi.org/10.1007/BFb0107797

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-528-08032-7

  • Online ISBN: 978-3-540-75359-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics