Advertisement

On the present understanding of Schottky contacts

Chapter
Part of the Advances in Solid State Physics book series (ASSP, volume 26)

Abstract

In 1874 F. Braun observed that “bei einer großen Anzahl natürlicher und künstlicher Schwefelmetalle … der Widerstand derselben verschieden war mit Richtung, Intensität und Dauer des Stromes”. W. Schottky then, in 1938, explained the rectifying behaviour of such metal-semiconductor contacts by a depletion layer which is characterized by the “Austrittsarbeit der Überschuß- oder der Defektelektronen an der Grenze Metall-Halbleiter”. Mott and most probably also Schottky postulated that the barrier height, as it is called now, equals the difference of the work function of the metal and the electron affinity of the semiconductor. Experimentally, the barrier heights are not found to obey this simple rule. The deviations were first assigned to electronic interface states by Bardeen. Following a later proposal of Heine's, the metal wave-functions tail into the virtual gap states of the semiconductor and by this determine the barrier height at the metal-semiconductor interface. This model very well describes all chemical trends observed with the barrier heights of metal-semiconductor contacts.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    F. Braun, Pogg. Ann. 153, 556 (1874)Google Scholar
  2. [2]
    W. G. Adams and R. E. Day, Proc. Roy. Soc. 25, 113 (1876)CrossRefGoogle Scholar
  3. [3]
    F. Braun, Sitzungsber. Naturforsch. Gesell. (Leipzig), p. 49 (1876)Google Scholar
  4. [4]
    L. D. Grondahl, U.S. Patent 1640335 issued Jan. 1, 1925Google Scholar
  5. [5]
    W. Schottky and W. Deutschmann, Phys. Z. 30, 839 (1929)Google Scholar
  6. [6]
    A. H. Wilson, Proc. Roy. Soc. A133, 458 (1936) and 134, 277 (1931)ADSGoogle Scholar
  7. [7]
    O. Fritsch, Ann. Phys. 22, 375 (1935)CrossRefGoogle Scholar
  8. [8]
    W. Schottky, Naturwissenschaften 26, 843 (1938)CrossRefADSGoogle Scholar
  9. [9]
    N. F. Mott, Proc. Cambridge Philos. Soc. 34, 568 (1938)CrossRefGoogle Scholar
  10. [10]
    W. Schottky, Z. Phys. 113, 367 (1939)zbMATHCrossRefADSGoogle Scholar
  11. [11]
    W. Schottky and E. Spenke, Wiss. Veröff. Siemens-Werke 18, 225 (1939)Google Scholar
  12. [12]
    E. Spenke and W. Schottky, Wiss. Veröff. Siemens-Werke 20, 40 (1940)Google Scholar
  13. [13]
    W. Schottky, Z. Phys. 118, 539 (1942)zbMATHCrossRefADSGoogle Scholar
  14. [14]
    H. Schweikert, Verh. Phys. Ges. 3, 99 (1939)Google Scholar
  15. [15]
    W. Schottky, Phys. Z. 41, 570 (1940)Google Scholar
  16. [16]
    S. Poganski, Z. Physik 134, 469 (1953)CrossRefADSGoogle Scholar
  17. [17]
    S. Poganski, Z. Elektrochem 56, 193 (1952)Google Scholar
  18. [18]
    E. H. Rhoderick, Metal Semiconductor Contacts (Clarendon, Oxford 1980)Google Scholar
  19. [19]
    L. J. Brillson, Surf Sci. Repts. 2, 123 (1982)CrossRefADSGoogle Scholar
  20. [20]
    B. L. Sherma (ed.), Metal-Semiconductor Schottky Barrier Junctions and Their Applications (Plenum, New York 1984)Google Scholar
  21. [21]
    W. Mönch, Surf. Sci. 21, 443 (1970)CrossRefADSGoogle Scholar
  22. [22]
    S. Kurtin, T. C. McGill and C. A. Mead, Phys. Rev. Letters 22, 1433 (1970)CrossRefADSGoogle Scholar
  23. [23]
    W. Gordy and W. J. O. Thomas, Phys. Rev. 24, 439 (1956)Google Scholar
  24. [24]
    K. W. Frese, jr., J. Vac. Sci. Technol. 16, 1042 (1979)CrossRefADSGoogle Scholar
  25. [25]
    H. B. Michaelson, J. Appl. Phys. 48, 4729 (1977)CrossRefADSGoogle Scholar
  26. [26]
    M. Schlüter, Phys. Rev. B17, 5044 (1978)ADSGoogle Scholar
  27. [27]
    J. Tersoff, Surf. Sci. 168, 275 (1986)CrossRefADSGoogle Scholar
  28. [28]
    Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology, ed. by O. Madelung (Springer, Berlin 1982), Group 3, Vol. 17Google Scholar
  29. [29]
    C. A. Mead, Solid-State Electron. 9, 1023 (1966)CrossRefADSGoogle Scholar
  30. [30]
    J. O. McCaldin, T. C. McGill and C. A. Mead, J. Vac. Sci. Technol. 13, 802 (1976)CrossRefADSGoogle Scholar
  31. [31]
    W. Mönch, phys. stat. sol. 40, 257 (1970)CrossRefADSGoogle Scholar
  32. [32]
    K. K. Chin, S. H. Pan, D. Mo, P. Mahowald, N. Newman, I. Lindau, and W. E. Spicer, Phys. Rev. B32, 918 (1985)ADSGoogle Scholar
  33. [33]
    W. Mönch, in: Festkörperprobleme: Advances in Solid State Physics, ed. by P. Grosse (Vieweg, Braunschweig 1984), Vol. XXIV, p. 229CrossRefGoogle Scholar
  34. [34]
    R. Ludeke, T.-C. Chiang and D. E. Eastman, J. Vac. Sci. Technol. 21, 599 (1982)CrossRefADSGoogle Scholar
  35. [35]
    D. Bolmont, P. Chen, F. Proix, and C.A. Sebenne, J. Phys. C: Solid State Phys. 15, 3639 (1982)CrossRefADSGoogle Scholar
  36. [36]
    R. Z. Bachrach and R. S. Bauer, J. Vac. Sci. Technol. 16, 1149 (1979)CrossRefADSGoogle Scholar
  37. [37]
    W. Mönch, Solid State Commun. 58, 215 (1986)CrossRefADSGoogle Scholar
  38. [38]
    J. Bardeen, Phys. Rev. 71, 717 (1947)CrossRefADSGoogle Scholar
  39. [39]
    V. Heine, Phys. Rev. 138, A 1689 (1965)CrossRefADSGoogle Scholar
  40. [40]
    F. Yndurain, J. Phys. C: Solid State Phys. 4, 2849 (1971)CrossRefADSGoogle Scholar
  41. [41]
    H. Flietner, phys. stat. sol. (b) 54, 201 (1972)CrossRefADSGoogle Scholar
  42. [42]
    C. Tejedor, F. Flores and E. Louis, J. Phys. C: Solid State Phys. 10, 2163 (1977)CrossRefADSGoogle Scholar
  43. [43]
    J. Tersoff, Phys. Rev. Letters 52, 465 (1984)CrossRefADSGoogle Scholar
  44. [44]
    A. J. Bennett and C. B. Duke, Phys. Rev. 162, 578 (1967)CrossRefADSGoogle Scholar
  45. [45]
    St. G. Louie and M. L. Cohen, Phys. Rev. B13, 2461 (1976)ADSGoogle Scholar
  46. [46]
    J. L. Freeouf and J. M. Woodall, Appl. Phys. Lett. 39, 727 (1986)CrossRefADSGoogle Scholar
  47. [47]
    W. E. Spicer, P. W. Chye, P. R. Skeath and I. Lindau, J. Vac. Sci. Technol. 16, 1422 (1979)CrossRefADSGoogle Scholar
  48. [48]
    H. H. Wieder, J. Vac. Sci. Technol. 15, 1498 (1978)CrossRefADSGoogle Scholar
  49. [49]
    R. H. Williams, R. R. Varma and V. Montgomery, J. Vac. Sci. Technol. 16, 1418 (1979)CrossRefADSGoogle Scholar
  50. [50]
    W. Mönch, Surf. Sci. 132, 92 (1983)CrossRefADSGoogle Scholar
  51. [51]
    A. Zur, T. C. McGill and D. L. Smith, Phys. Rev. B28, 2060 (1983)ADSGoogle Scholar
  52. [52]
    C. B. Duke and C. Mailhiot, J. Vac. Sci. Technol. B3, 1170 (1985)Google Scholar
  53. [53]
    L. Ley, R. A. Pollak, S. P. Kowalczyk, R. McFeely and A. Shirley, Phys. Rev. B8, 641 (1973)ADSGoogle Scholar
  54. [54]
    E. A. Kraut, R. W. Grant, J. R. Waldrop and S. P. Kowalczyk, Phys. Rev. Lett. 44, 1620 (1980)CrossRefADSGoogle Scholar
  55. [55]
    N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt, Rinehart and Winston, New York 1976), p. 369Google Scholar
  56. [56]
    N. B. Hanney and C. P. Smith, J. Am. Chem. Soc. 68, 171 (1946)CrossRefGoogle Scholar
  57. [57]
    L. Pauling, The Nature of the Chemical Bond (Cornell University, Ithaca, N.Y., 1960)Google Scholar
  58. [58]
    J. Topping, Proc. Roy. Soc. (London) A114, 67 (1927)ADSGoogle Scholar
  59. [59]
    J. Tersoff, Phys. Rev. B30, 4874 (1984)ADSGoogle Scholar
  60. [60]
    A. M. Cowley and S. M. Sze, J. Appl. Phys. 36, 3212 (1965)CrossRefADSGoogle Scholar
  61. [61]
    J. Tersoff, Phys. Rev. B32, 6968 (1985)ADSGoogle Scholar
  62. [62]
    W. Ludwig, Festkörperphysik (Akadem. Verlagsges., Wiesbaden 1978), p. 282Google Scholar
  63. [63]
    J. C. Phillips, Solid State Commun. 12, 861 (1973)CrossRefADSGoogle Scholar
  64. [64]
    C. Tejedor and F. Flores, J. Phys. C: Solid State Phys. 11, L19 (1978)CrossRefGoogle Scholar
  65. [65]
    W. Mönch, Proc. 13th Annual Conf. on the Phys. and Chem. of Semicond. Interfaces, Pasadena, CA (USA), 1986; J. Vac. Sci. Technol. B4, in print (1986)Google Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1986

Authors and Affiliations

  1. 1.Laboratorium für FestkörperphysikUniversität DuisburgDuisburgFederal Republic of Germany

Personalised recommendations